شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

خوردگی فلزات

تخریب فلزات با عوامل غیر خوردگی

فلزات در اثر اصطکاک ، سایش و نیروهای وارده دچار تخریب می‌‌شوند که تحت عنوان خوردگی مورد نظر ما نیست.

فرایند خودبه‌خودی و فرایند غیرخودبه‌خودی

خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش می‌‌رود که به حالت پایدار برسد. البته M+n می‌‌تواند به حالتهای مختلف گونه‌های فلزی با اجزای مختلف ظاهر شود. اگر آهن را در اتمسفر هوا قرار دهیم، زنگ می‌‌زند که یک نوع خوردگی و پدیده‌ای خودبه‌خودی است. انواع مواد هیدروکسیدی و اکسیدی نیز می‌‌توانند محصولات جامد خوردگی باشند که همگی گونه فلزی هستند. پس در اثر خوردگی فلزات در یک محیط که پدیده‌ای خودبه‌خودی است، اشکال مختلف آن ظاهر می‌‌شود.

بندرت می‌‌توان فلز را بصورت فلزی و
عنصری در محیط پیدا کرد و اغلب بصورت ترکیب در کانی‌ها و بصورت کلریدها و سولفیدها و غیره یافت می‌‌شوند و ما آنها را بازیابی می‌‌کنیم. به عبارت دیگر ، با استفاده ‌از روشهای مختلف ، فلزات را از آن ترکیبات خارج می‌‌کنند. یکی از این روشها ، روش احیای فلزات است. بعنوان مثال ، برای بازیابی مس از ترکیبات آن ، فلز را بصورت سولفات مس از ترکیبات آن خارج می‌‌کنیم یا اینکه آلومینیوم موجود در طبیعت را با روشهای شیمیایی تبدیل به ‌اکسید آلومینیوم می‌‌کنند و سپس با روشهای الکترولیز می‌‌توانند آن را احیا کنند.

برای تمام این روشها ، نیاز به صرف انرژی است که یک روش و فرایند غیرخودبه‌خودی است و یک فرایند غیرخودبه‌خودی هزینه و مواد ویژه‌ای نیاز دارد. از طرف دیگر ، هر فرایند غیر خودبه‌خودی درصدد است که به حالت اولیه خود بازگردد، چرا که بازگشت به حالت اولیه یک مسیر خودبه‌خودی است. پس فلزات استخراج شده میل دارند به ذات اصلی خود باز گردند.

در جامعه منابع فلزات محدود است و مسیر برگشت طوری نیست که دوباره آنها را بازگرداند. وقتی فلزی را در اسید حل می‌‌کنیم و یا در و پنجره دچار خوردگی می‌‌شوند، دیگر قابل بازیابی نیستند. پس خوردگی یک پدیده مضر و ضربه زننده به ‌اقتصاد است.

img/daneshnameh_up/8/84/corrosionmap.jpg

<><> 


جنبه‌های اقتصادی فرایند خوردگی

برآوردی که در مورد ضررهای خوردگی انجام گرفته، نشان می‌‌دهد سالانه هزینه تحمیل شده از سوی خوردگی ، بالغ بر 5 میلیارد دلار است. بیشترین ضررهای خوردگی ، هزینه‌هایی است که برای جلوگیری از خوردگی تحمیل می‌‌شود.

پوششهای رنگها و جلاها

ساده‌ترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده ‌از رنگها بصورت آستر و رویه ، می‌‌توان ارتباط فلزات را با محیط تا اندازه‌ای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای ساده‌ای می‌‌توان رنگها را بروی فلزات ثابت کرد که می‌‌توان روش پاششی را نام برد. به کمک روشهای رنگ‌دهی ، می‌‌توان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد.

آخرین پدیده در
صنایع رنگ سازی ساخت رنگهای الکتروستاتیک است که به میدان الکتریکی پاسخ می‌‌دهند و به ‌این ترتیب می‌توان از پراکندگی و تلف شدن رنگ جلوگیری کرد.

پوششهای فسفاتی و کروماتی

این پوششها که پوششهای تبدیلی نامیده می‌‌شوند، پوششهایی هستند که ‌از خود فلز ایجاد می‌‌شوند. فسفاتها و کروماتها نامحلول‌اند. با استفاده ‌از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز می‌‌کنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیط‌های خنثی می‌‌توانند کارایی داشته باشند.

این پوششها بیشتر به ‌این دلیل فراهم می‌‌شوند که ‌از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی می‌‌توانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکم‌تر می‌‌سازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمی‌‌تواند از خوردگی جلوگیری کند.

پوششهای اکسید فلزات

اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری می‌‌کند. بعنوان مثال ، می‌‌توان تحت عوامل کنترل شده ، لایه‌ای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز می‌‌چسبد و باعث می‌‌شود که ‌اتمسفر به‌ آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگ‌پذیر است و می‌‌توان با الکترولیز و غوطه‌وری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفره‌های شش وجهی است که با الکترولیز ، رنگ در این حفره‌ها قرار می‌‌گیرد.

همچنین با پدیده ‌الکترولیز ،
آهن را به ‌اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل می‌‌کنند که مقاوم در برابر خوردگی است که به آن "سیاه‌کاری آهن یا فولاد" می‌‌گویند که در قطعات یدکی ماشین دیده می‌‌شود.

پوششهای گالوانیزه

گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام می‌‌گیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعه‌ای که می‌‌خواهیم گالوانیزه کنیم، کاتد الکترولیز را تشکیل می‌‌دهد و فلز روی در آند قرار می‌‌گیرد. یکی دیگر از روشهای گالوانیزه ، استفاده ‌از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است.

در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار می‌‌دهند و با استفاده ‌از غوطه‌ور سازی فلز در روی مذاب ، لایه‌ای از روی در سطح فلز تشکیل می‌‌شود که به ‌این پدیده ، غوطه‌وری داغ (Hot dip galvanizing) می‌گویند. لوله‌های گالوانیزه در ساخت قطعات مختلف ، در
لوله کشی منازل و آبرسانی و ... مورد استفاده قرار می‌‌گیرند.

پوششهای قلع

قلع از فلزاتی است که ذاتا براحتی اکسید می‌‌شود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم می‌‌شود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و ... بخوبی پایداری می‌‌کند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده می‌‌شود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی می‌‌باشد که بر روی ظروف آهنی این پوششها را قرار می‌‌دهند.

پوششهای کادمیم

این پوششها بر روی فولاد از طریق آبگیری انجام می‌‌گیرد. معمولا پیچ و مهره‌های فولادی با این فلز ، روکش داده می‌‌شوند.

فولاد زنگ‌نزن

این نوع فولاد ، جزو فلزات بسیار مقاوم در برابر خوردگی است و در صنایع شیر آلات مورد استفاده قرار می‌گیرد. این نوع فولاد ، آلیاژ فولاد با کروم می‌‌باشد و گاهی نیکل نیز به ‌این آلیاژ اضافه می‌‌شود.
مرجع

سایت مفید شیمی

لطفا به این آدرسC C Alive!Table of ContentsIndexTextbooks مراجعه فرمایید

سرعت واکنش

سرعت واکنش

سرعت واکنش ، عبارت از تغییر غلظت هر یک از مواد اولیه یا مواد حاصل نسبت به زمان انجام واکنش است.

نگاه کلی

سرعت یک واکنش ، روند تبدیل مواد واکنش دهنده به محصول در مدت زمان معینی را نشان می‌دهد. سرعت واکنشها یکی از مهمترین بحثها در سینیتیک شیمیایی است. شیمیدانها همیشه دنبال راهی هستند که سرعت واکنش مفید را بالا ببرند تا مثلا در زمان کوتاه بازده بالایی داشته باشند و یا در پی راهی برای کاهش سرعت یا متوقف ساختن برخی واکنشهای مضر هستند. بعنوان مثال رنگ کردن سطح یک وسیله آهنی روشی برای متوقف ساختن و یا کم کردن سرعت زنگ زدگی و جلوگیری از ایجاد اکسید آهن است.

طبقه بندی واکنشها برحسب سرعت

هدف از مطالعه سرعت یک واکنش این است که بدانیم آن واکنش چقدر سریع رخ می‌دهد. ترمودینامیک شیمیایی ، امکان وقوع واکنش را پیش‌بینی می‌کند، اما سینتیک شیمیایی چگونگی انجام یک واکنش و مراحل انجام آن و سرعت پیشرفت واکنش را بیان می‌کند. از لحاظ سرعت ، واکنشها به چند دسته تقسیم می‌شوند:

ادامه مطلب ...

فروشویی زیستی کانی‌های سولفیدی مس،بااستفاده از باکتری‌ها

کانی‌های مس دارای مقادیر متنابهی ناخالصی بصورت سولفید هستند که این ناخالصی قبل از استفاده از کانی مس در صنایع گوناگون، باید حذف شود، چرا که باعث کاهش عیار مس و ایجاد اختلال در فرآیندهای صنعتی می‌شود

کانی‌های مس دارای مقادیر متنابهی ناخالصی بصورت سولفید هستند که این ناخالصی قبل از استفاده از کانی مس در صنایع گوناگون، باید حذف شود، چرا که باعث کاهش عیار مس و ایجاد اختلال در فرآیندهای صنعتی می‌شود، فروشویی کانی‌های معدنی مانند کانی‌های مس،اغلب بسیار دشوار بوده و به میزان زیادی مواد گران قیمت، مانند انواع اسیدها نیاز دارد، از این رو استفاده از روش‌های فروشویی زیستی کانی‌ها، با استفاده از باکتری‌های مفیدو مطلوب به نظر می‌رسد.
به گزارش خبرنگار باشگاه خبرنگاران، محمد فرشیدی، دانش آموخته رشته مهندسی شیمی دانشگاه تربیت مدرس، با راهنمایی دکتر عباس شجاع‌الساداتی، در پژوهشی موفق به فروشویی زیستی کانی‌های سولفیدی مس، با استفاده از کشت مخلوط باکتری‌های میانه دوست (مزوفیل)، شد.
در این پژوهش، به منظور حذف سولفید و خالص سازی سنگ معدن مس، از مخلوط باکتری‌هایی استفاده شد که در شرایط اسیدی و دمای معمولی، از سولفید استفاده کرده، آن را از مس جدا کرده و در داخل سلول خود انباشته می‌کنند، سپس با روش‌های فروشویی، مخلوط باکتری‌ها از سنگ معدن جدا شده و سنگ معدن مس، بصورت خالص، باقی ماند.
یافته‌های این پژوهش نشان داد، بیشترین میزان فروشویی مس از سنگ معدن کم عیار، ۲۶ درصد در مدت ۱۷ روز و بیشترین مقدار فروشویی مس از سنگ معدن کالکوپیریت. ۲۶ درصد در مدت ۲۷ روز بود که در مقایسه با نمونه‌های بدون باکتری، به ترتیب ۱۲ و ۴۶ درصد افزایش نشان داد.
نتایج تحقیق نشان دهنده تاثیر مطلوب مخلوط کشت باکتری‌های میانه‌دوست بر خالص سازی سنگ معدن مس است. 

شیمی و تکنولوژی-اثر فوتوالکتریک

 اثر فوتوالکتریک

بسیاری از فروشگاه ها درهایی دارند که به طور خودکار باز و بسته می شوند. بعضی از این درها با دستگاهی کار می کنند که عملکرد آن بستگی به نور دارد. در یک طرف جلوی در، منبعی از نور است. مقابل این منبع ، یک اشکار ساز نور است. وقتی باریکه ای از نور روی اشکار ساز می افتد سبب می شود که از ماده درون آشکارساز الکترونهایی خارج شوند و جریان الکتریکی در مدار برقرار گردد. گسیل الکترون ها بر اثر نور را، اثر فوتوالکتریک می نامند. وقتی شما به طرف در می روید و بین منبع نور و آشکارساز قرار می گیرید ، باریکه نور قطع می شود و گسیل الکترون از اشکارساز متوقف شده ، جریان الکتریکی قطع می گردد. با قطع جریان الکتریکی، مکانیسمی به کار می افتد که در را باز می کند.

اینشتین در سال 1921 برای توضیح اثر فوتوالکتریک جایزه نوبل دریافت کرد. مدتها قبل معلوم شده بود که وقتی نور به سطح بعضی از مواد برخورد می کند، الکترون از آن ماده گسیل می باد. اما واقعیتی معماگونه درباره این تغییر وجود داشت. معما این بود که وقتی شدت نور ( تعداد فوتونها در واحد زمان) کاهش میافت، انرژی الکترون های گسیل یافته تغییر نمی کرد، بلکه تعداد الکترون ها کمتر می شد. اینشتین نشان داد که فرضیه پلانک این مشاهده را توضیح می دهد. بر اساس فرضیه پلانک ،فرض میکنیم به جای اینکه انرژی به طور پیوسته منتشر شود، به صورت بسته های کوچک یا کوانتوم های انرژی منتشر می شود. کوانتوم های انرژی تابشی را غالبا فوتون می نامند. علاوه بر این او اظهار داشت که مقدار انرژی منتشر شده مستقیما با فرکانس نور گسیل یافته ارتباط دارد.

مقدار معینی انرژی لازم است تا یک الکترون از سطح ماده ای جدا شود. اگر فوتونی با انرژی بیشتر به الکترون برخورد کند، الکترون را از سطح دور خواهد کرد. چون الکترون در حال حرکت است، مقداری انرژی جنبشی دارد. در این صورت مقداری از انرژی فوتون برای آزاد کردن الکترون از سطح و بقیه ان صرف انرژی جنبشی الکترون می شود. هرگاه نور با یک فرکانس معین به کار رود، در این صورت الکترونهایی که از سطح ماده می گریزند همگی انرژی یکسان خواهند داشت.

اگر شدت نور افزایش یابد، و فرکانس ثابت بماند تعداد الکترون های گسیل یافته افزایش خواهد یافت. اما اگر فرکانس نور افزایش یابد، انرژی فوتون زیاد می شود. چون مقدار انرژی لازم برای آزاد شدن الکترون از اتم یک عنصر معین، ثابت است، الکترون هایی که با فرکانس زیادتر سطح ماده را ترک می کنند، انرژی جنبشی بیشتری خواهند داشت.

فرضیه پلانک همراه با توضیح اینشتین ماهیت ذره ای بودن نور را تایید کرد. 

مرجع

تبلور ( کریستالیزه کردن )

تبلور ( کریستالیزه کردن )

تبلور یکی از تکنیک های خالص سازی است و یکی از بهترین روشهای تخلیص اجسام جامد است که در آن ماده جامد ناخالص در حداقل مقدار حلال داغ حل می شود و در اثر سرد کردن در محلول رسوب میکند.

روش عمومی تبلور عبارت است از :
●  حل کردن جسم در حلال مناسب به کمک گرما و تهیه محلول سیر شده از جسم
●  صاف کردن سریع محلول گرم
●  سرد کردن تدریجی محلول صاف شده به منظور راسب کردن جسم به شکل بلور
●  صاف کردن و شستن بلورها با حلال سرد  و خشک کردن آنها
●  تعیین نقطه ذوب بلور

عوامل تاثیر گذار در حلالیت:
1- خصوصیات حلال (  قطبی یا غیرقطبی )
2- حجم حلال 
3- دمای حلال ( حلالیت با افزایش دما افزایش میابد )
انتخاب حلال مناسب نکته اساسی و مهم در عمل تبلور محسوب می شود. حلال مناسب حلالی است که در دمای معمولی جسم را به مقدار جزئی در خود حل کند، ولی در گرما و به ویژه در دمای جوش، این انحلال به آسانی صورت گیرد. عامل دیگر در انتخاب حلال مناسب، توجه به قطبیت آن است که با توجه به ساختمان ماده مورد نظر انتخاب می شود. زیرا ترکیبات قطبی در حلالهای قطبی و ترکیبات غیر قطبی در حلالهای غیر قطبی حل می شوند.

به هنگام انتخاب حلال مناسب برای تبلور، به نکات زیر باید توجه کرد :
●  حلال در دمای معمولی ( دمای آزمایشگاه ) نباید ترکیب را حل کند، اما در نقطه جوش خود باید حداکثر ترکیب یا تمام آن را در خود حل کند.
●  نقطه جوش حلال نباید از نقطه ذوب ترکیب مورد نظر بیشتر باشد. زیرا در این صورت، پیش از اینکه دمای حلال به نقطه جوش آن برسد، جسم در حلال ذوب می شود. ( در پدیده تبلور، جسم باید در حلال حل شود).
●  حلال و جسم حل شده نباید با هم واکنش بدهند.
●  تا حد امکان نقطه جوش حلال پایین باشد تا به آسانی تبخیر شود.

حلال های مورد استفاده در تبلور ( کریستالیزه کردن )

چند نکته در مورد عمل تبلور ( کریستالیزه کردن )● چنانچه محلول به شدت رنگی و یا ناخالص باشد، گرم کردن را قطع کنید پس از اینکه محلول، اندکی خنک شد، کمی پودر زغال به آن اضافه کنید. زغال به دلیل دارا بودن سطح فعال زیاد می تواند ناخالص یها و رنگ را به خود جذب کند. سپس مجددا محلول را گرم کنید.
● برای تسریع در عمل تبلور یک تکه از بلور ترکیب را به عنوان هسته اولیه در ظرف بیندازید این عمل را بذرافشانی می نامند.

 مرجع

جذب سطحی

جذب سطحی

در عملیات جذب سطحی انتقال یک جز از فاز گاز یا مایع به سطح جامد صورت می گیرد از کاربردهای این فرایند می توان به رنگبری شربت قند و تصفیه روغنهای صنعتی یا خوراکی و حذف مواد آلاینده از هوا یا مخلوط گازهای دیگر اشاره کرد.
واژه جذب سطحی برای تشریح این حقیقت به کار می رود که غلظت مولکولهای جذب شده در سطح تماس جامد بیشتر از فاز گاز یا محلول است. جذب روی یک سطح جامد به علت نیروی جاذبه اتم ها یا مولکولها در سطح آن جامد است در عمل جذب سطحی نیروهای مختلفی اعم از فیزیکی و شیمیایی موثرند و مقدار آن بستگی به طبیعت ماده جذب شده وجسم جاذب دارد.
در حالت جداسازی های گازی از فرآیند جذب ، در رطوبت زدائی ها هوای خشک و دیگر گازها ، بوزدائی و جداسازی ناخالیصی ها از گازهای صنعتی مثل دی اکسید کربن ، بازیابی حلالهای پرارزش از مخلوط رقیق آنها با هوا یا گازهای دیگر، و جداسازی مخلوطی از هیدروکربن های گازی مانند مخلوطی از متان ، اتیلن ، اتان ، پروپیلن و پروپان استفاده می شود. از فرآیندهای جداسازی مایع می توان رطوبت زدائی بنزین، رنگ زدائی محصولات نفتی و محلولهای آبکی قندی، بوزدائی و طعم زدائی آب، و جداسازی هیدروکربن های آروماتیکی و پارافینی ، را نام برد که هرکدام از این موارد در صنعت کاربرد وسیعی داشته و بنا به مورد و شرایط محدوده کاری از آن استفاده می شود.
این عملیات ها همه از این جهت مشابه هستند که در آنها مخلوطی که باید تفکیک شود با یک فاز نامحلول دیگر تماس حاصل می نماید ( مانند جاذب جامد) و پخش نامساوی مواد اولیه بین فاز جذب شده ر وی سطح جامد و توده سیال موجب جداسازی می شود.
دو مکانیزم اصلی برای جذب سطحی وجود دارد:
1 - جذب فیزیکی
2 - جذب شیمیایی

جاذبها :
جامدی که بر روی سطح آن جذب اتفاق می افتد جاذب یا سوسترا می نامند و مایع جذب شده را مجذوب می نامند. جذب سطحی بر روی سطح مشترک جامد مایع به وقوع می پیوندد.
جامدهای جاذب معمولا به شکل گرانول ( ذرات کروی شکل با قطر چند میلی متر) مصرف می شوند و اندازه آنها از 12 میلیمتر قطر تا 50 میکرومتر متغیر است. بسیاری از جامدات این خاصیت را دارند که بتوانند مقداری گاز یا ماده حل شده در حلالی را ، جذب نمایند.
قدرت جذب یک ماده تابع عوامل زیر است :

سطح تماس
با افزایش سطح تماس مقدار جذب افزایش می یابد ، بهترین جذب کننده ها موادی هستند که ذرات ریز تری داشته باشند و به عبارت دیگر سطح تماس بیشتر داشته باشند. از میان مهمترین جذب کننده ها می توان ژل ، سیلیس ، کربن اکتیو را نام برد.

غلظتمقدار ماده جذب شده برای واحد جرم جذب کننده تابعی از غلظت ماده حل شده می باشد. بررسی این دو کمیت در دمای ثابت منجر به بدست اوردن کمیت ایزوترم جذب سطحی می شود. این ایزوترم ها توسط افراد مختلفی بررسی شده است که مهمترین انها ایزوترم فرندلیش می باشد.

دماافزایش دما اصولا باعث کاهش جذب سطحی می شود مگر در مواردی که جذب سطحی همراه با واکنش شیمیایی باشد.

نوع ماده جذب شده و جاذب
نوع ماده جذب شده و جاذب در جذب سطحی تاثیرگذار است به طوری که بعضی از مواد جاذب قدرت جذب زیاد نسبت به ماده حل شده به خصوصی از خود نشان می دهد ، در حالی که نسبت به ماده دیگر قدرت جذب کمتری دارند.

حالت ماده جذب شده و جاذب
حالت ماده جذب شده و جاذب ، همراه بودن ان با واکنش شیمیایی ، برگشت پذیر بودن و یا برگشت ناپذیر بودن واکنش انها نیز در جذب سطحی تاثیرگذار است.

 

ذغال های رنگ بر


این مواد به شکل های مختلف ساخته می شود:
1- مخلوط کردن مواد گیاهی با مواد معدنی مانند کلرید کلسیم، کربنیزه کردن، و شست شوی مواد معدنی
2- مخلوط کردن موادآلی مانند خاک اره با مواد متخلخل مثل سنگ آتشفشانی (سنگ پا) و حرارت دادن و کربنیزه کردن تا زمانی که مواد کربنی در سطح مواد متخلخل رسوب نمایند.
3- کربینزه کردن چوب، خاک اره، و مشابه آن و فعال سازی با هوای داغ یا بخار، و از لیگنیت و ذغال بیتومینوس به عنوان مواد اولیه استفاده می شود.
از این مواد برای اهداف زیادی مانند رنگ زدائی محلولهای شکر، مواد شیمیایی صنعتی، داروها و مایعات خشک شوئی، تصفیه روغنهای گیاهی و حیوانی و در بازیابی طلا و نقره از محلولهای سیانور حاصل از شستشوی سنگ معدن، استفاده می شود. 

مرجع

زباله طلای سیاه

زباله طلای سیاه

مواد زائد جامعه که پس‌مانده ناخواسته زندگی بشری است ،خود موجبات مسائلی نظیر انتقال بیماریها ، ازدیاد حشرات موذی و موش، بو و منظره نامطبوع و گاهی اوقات آتش سوزی و تصادفات و صدمات بدنی گردیده است. ازدیاد جمعیت از یک طرف و افزایش تولید سرانه مواد زائد از خانه‌ها ، کارخانه‌ها و مؤسسات و تخریب و تغییرات در بناها و فضاهای سبز و گیاهان از طرف دیگر ابعاد مسأله را از نظر حجم مواد و مسائل حمل و نقل و دفع نهایی بصورت تصاعدی افزایش داده است ؛ زیرا دفع میزان محدود مواد زائد آسان است ولی وقتی به هزاران تن در روز افزایش یافت ، مسائل پخش در محیط و بیماریهای منتشره توسط مگس ، سوسک ، موش ، گربه ، سگ و مسائل ماشین‌آلات حمل و نقل و هزینه تهیه وسائل انتقال و دفن یا دفع نهایی به طریق دیگر همگی در هم ضرب می‌شود و ابعاد بهداشتی و اقتصادی مسأله به حالت وحشتناکی بزرگ و مشکل‌آفرین خواهند شد.

عدم مدیریت صحیح و مقررات صریح برای جمع‌آوری و دفع و بازیافت بیش از 38 هزار تن زباله در روز در ایران که تقریباً 76% آن مواد قابل تبدیل به کود بوده و هزاران تن پلاستیک و کاغذ و کارتن را در بردارد ، اکنون به شکلی بی‌رویه به دل خاک سپرده شده و یا در حوالی شهرها پراکنده می‌شوند که صرف‌نظر از خطرات بهداشتی زیانهای اقتصادی کلانی را نیز در بردارند.

طبق یک محاسبة کلی هموطنان ما در زمینه‌های مختلف سالانه متحمل هزینه‌هایی حدود 8 میلیارد تومان برای جمع‌آوری و دفع زباله می‌شوند که قسمت بزرگی از آن با اعمال مدیریت صحیح و بکارگیری تکنولوژی مناسب کاهش پذیر است ؛ زیرا 80% این هزینه به مخارج پرسنلی و ماشین‌آلاتی منحصر می شود که صرف جمع‌آوری و حمل زباله می‌گردد و مبادرت به بازیافت مواد از زباله که استفاده مجدد از آنها را در پی دارد ، پاسخ‌گوی بسیاری از هزینه‌های گزاف دفع زباله می‌شود. کاهش 50% از حجم زباله‌های شهری در اثر بازیافت ، صرفه‌جویی در مواد اولیه و کاهش آلودگی‌های محیط زیست که مثلاً در اثر بازیافت کاغذ ، 74% در آلودگی هوا و 35% در آلودگی آب بررسی شده است (4). بین کشورهای جهان آلمان ، انگلیس ، هلند و به ویژه ژاپن که نیمی از زباله‌های خود را بازیافت می‌کند، در این زمینه برنامه‌های بسیار وسیعی را به اجرا گذاشته و موفقیّت‌های بسیاری را کسب نموده‌اند. بازیافت زباله که در همه روش‌ها مطرح می‌شود ، با توجه به مقدار و نوع و مواد متشکله زباله جایگاه اقتصادی ویژه‌ای دارد. ایجاد صنایع کمپوست و ترتیب برنامه‌های دفع بهداشتی زباله‌های بیمارستانی با دستگاه زباله‌سوز و یا هر روش پیشرفته دیگر و از همه مهمتر بازیافت مواد از زباله در مراکز تولید ، به شکلی که از هرگونه وابستگی به خارج مبرا باشد، از جمله اهداف این طرح است.

بازیافت به دو صورت امکان‌پذیر است : نخست استفاده مجدد، مانند پرکردن مجدد شیشه‌های نوشابه و دوم بازیافت ، مانند استفاده مجدد از لاستیکهای کهنه که به روکشی برای خیابانها بدل می‌شوند.

ارزشمندترین مادة بازیافت شده از زباله بر حسب درآمد ، انواع مختلف فلزات است. هر چند که تعداد زیادی از مواد دیگر زباله مانند استخوان ، کاغذ ، کارتن ، پارچه ، پلاستیک ، مو ، فضولات کشتارگاه‌ها و غیره نیز اهمیت ویژه‌ای دارند و لیکن همة مواد بازیافتی از زباله ارزش ورود به صنعت بازیافت را ندارند.

عوامل مؤثر بر بازیافت

یکی از عوامل مؤثر و غالب در بازیافت عامل اقتصادی است. افزایش چشمگیر و مؤثر قیمت نفت و محصولات آن محرکی است تا تمامی کشورهای صنعتی نسبت به کشف امکانات بازیافت مواد ، بعنوان جلوگیری از افزایش قیمت نفت اقدام کنند. در زمینة دفن در زمین معمولاً مناطق پست و کم‌ارتفاع به عنوان اراضی محل دفن انتخاب می‌شوند و نهایتاً پس از فشردن و متراکم کردن جهت جلوگیری از نشت هرگونه مادة سمی به آبهای زیرزمینی ، با لایه‌ای از خاک رس پوشش داده می‌شوند. بیشتر این زمین‌ها در شهرهای بزرگ در نواحی کم جمعیت واقع شده‌اند و کامیونهای حامل زباله باید فرسنگ‌ها راه بپیمایند و مقدار زیادی گازوئیل و یا بنزین مصرف کنند تا به جایگاه دفن بهداشتی زباله برسند که مستلزم هزینه و نیروی کار زیادی است و از اشکالات موجود در روش دفن زباله ، موضوع ناهماهنگی و نامتجانس بودن مواد است.

بازیافت زباله معمولاً بر سایر روش‌های دفع همچون دفن یا سوزاندن مقدم است ، زیرا علاوه بر صرفه‌جویی در هزینه ، انرژی و منابع طبیعی ، آلودگی محیط را نیز کاهش می‌دهد.

طبق یک بررسی، جمع‌آوری مواد قابل بازیافت برای هر تن زباله حدود 35 دلار و دفن روزانه هر تن مواد زائد در یک محل حــدوداً تا 80 دلار هزینه در بردارد. بازیافت تا 50% یا بیشتر حجم مواد پس مانده را کاهش داده و هزینه‌های سیستم جمع‌آوری زباله‌ها را بطور مؤثر کاهش می‌دهد. کشور ژاپن موفق‌ترین برنامه بازیافت را در سطح جهان به خود اختصاص داده است. حدود یک سوم زباله‌های ژاپن سوزانده شده و فقط یک ششم آن دفن می‌گردد(4).

خانواده‌های ژاپنی پس‌مانده‌های خانگی خویش را در هفت قسمت جداگانه و در روزهای مختلف جمع‌آوری و بازیافت می‌نمایند.

در آمریکا روزانه تعداد 2 میلیون درخت قطع می‌شود که ضرر بزرگی به محیط زیست است. بازیافت کاغذ در یک روز یکشنبه موجب جلوگیری از قطع 7500 درخت می‌شود و با بازیابی یک تن آلومینیم 4 تن بوکسیت و 700 کیلوگرم ذغال کک نیز ذخیره شده و باعث جلوگیری از ورود 35 کیلوگرم آلومینیم فلوراید به هوا می‌شود(4).

عــــمل بازیابی مصرف انرژی و آلودگی هوا را کاهش می‌دهد. با بازیابی بطری‌های پلاستیکی 60-50% انرژی مصرفی برای ساختن بـــطری‌های نو صرفه‌جویی می‌شود (4).

در ایران با جمعیت حدود 60 میلیون نفر ، روزانه بیـش

از 38 هزار تن زباله تولید می‌شود که هزینه‌های جمع‌آوری و دفع آنها تنها در شهرها روزانه حدود 21 میلیون تومان برآورد می‌شود. طبق یک بررسی فقط بهای کاغذ و کارتن و پلاستیک جدا شده از زباله که به ترتیب 27/8% و 11/4% کل زباله‌های پنج شهر کوچک و بزرگ کشور را تشکیل می‌دهد که رقم قابل توجهی است. بررسی‌های اخیر که در شهرهای مختلف کشور انجام گرفته است، نشان می‌دهد که مواد آلی از 6/76-35% و کارتن از 7/4 9/2% و پلاستیک از 3/6-1/2% مهمترین اجزای قابل بازیافت زباله کشور ما را تشکیل می‌دهند (4). و لیکن علیرغم اینکه فرهنگ بازیافت مواد از قدیم در ایران موسوم بوده است در سالهای اخیر ، بازیافت بی‌رویه ( زباله دزدی ) مواد بعلت تنوع مواد، در عدم مدیریت صحیح و نیز محدودیت ورود مواد اولیه خطرات و بحران‌های بهداشتی خاصی را در کشور به وجود آورده است. کاغذ ، آلومینیم ، لاستیک و مواد پلاستیکی و شیشه از جمله زواید بسیار با ارزش هستند که می‌توان آنها را بازیابی کرد.

بازیافت کاغذ

معمولاً کاغذهای باطله مثل روزنامه ، مجلات و غیره قابل بازیافت هستند ، ولی کاغذ شیرهای پاکتی ، نوشابه‌ها، کاغذهـــای فتوکپی ، آلومینیومی و شاید کامپیوتری برای استفادة مجدد چندان مناسب نیستند. استفاده مجدد از پس‌مانده‌های کاغذی موجب احیای جنگلها و منابع طبیعی می‌گردد که خود اقدامی اساسی برای مقابله با آلودگی هواست. منافع اقتصادی و عدم وابستگی در جهت ورود خمیر کاغذ از خارج ، محاسن زیر را نیز در پی دارد :

صرفه‌جویی در مصرف انرژی ، کمک مستقیم به سیستم

جمع‌آوری و دفع زباله‌های تولیدی ، کاهش بار آلودگی و نهایتاً عادت دادن مردم به جلوگیری از اسراف و تبذیر از نتایج بازیافت کاغذ است.

در کشور ما مصرف سرانة کاغذ سالانه بالغ بر 11 کیلوگرم است. تولید یک تن خمیر کاغذ 40 کیلوگرم ضایعات آلوده‌ساز وارد محیــط می‌کند که از جنبه بهداشتی قابل تعمق است (4). محاسبه کلی بهای کاغذهای بازیافت شده از زباله در جهان می‌تواند سهم عظیمی از هزینه‌های جمع‌آوری و دفع زباله را بخوبی جبران نماید و تحقیقات نشان داده است که اگر در پروسه تولید کاغذ ، مقداری کاغذ باطله به مخلوط اصلی اضافه شود به همان مقدار از بار آلودگی آب و هوای حاصل از این پروسه کاسته می‌شود.

بازیافت پلاستیک

مصرف پلاستیک به علت سبکی.........بقیه در ادامه مطلب

ادامه مطلب ...

انواع لیزر

در حال حاضر عمل لیزر را می توان در شش نوع سیستم مشاهده کرد :

لیزر حالت جامد ، لیزر گازی ، لیزر مایع ، لیزر نیمه رسانا، لیزر شیمیایی و لیزرهای کی لیتی .

1- لیزر حالت جامد : در این نوع لیزر ، ماده فعال ایجاد کننده لیزر، یک یون فلزی است که با غلظت کم در شبکه یک بلور یا دورن شیشه، به صورت ناخالصی قرار داده شده است . فلزاتی که برای این منظور بکار می روند عبارتند از :

الف : اولین سری فلزات واسطه

ب : لانتانیدها

ج : آکتنیدها

2- لیزر گازی : ماده فعال در اینگونه سیستم ها یک گاز است که به صورت خالص یا همراه گازهای دیگر مورد استفاده قرار می گیرد. بعضی از این مواد عبارتند از :

نئون به همراه هلیم ، کربن دی اکسید به همراه نیتروژن و هلیم ، آرگون ، کلر ، بخارید ، برم ، بخار آب، کربن منوکسید ، گوگرد ، هگزا فلورید ، بخار جیوه به همراه هلیم .

3- لیزر مایع : از مایعات بکار رفته در این نوع لیزرها اغلب به منظور تغییر طول موج یک لیزر دیگر استفاده می شود ( اثر رامان ) . بعضی از این مواد عبارتند از:

 تولوئن ، بنزن و نیتروبنزن .

4- لیزر نیمه رسانا : به این نوع لیزرها ، لیزر دیود و یا لیزر تزریقی نیز گفته می شود. نیمه رساناها تشکیل شده اند از دو ماده که یکی کمبود الکترون داشته و دیگر الکترون اضافی دارد . ماده اول را نوع p و ماده دوم را نوع n می گویند . وقتی که این دو به یکدیگر متصل می شوند در محل اتصال ناحیه هایی به نام منطقه اتصال n – p به وجود می آید و آن جایی است که عمل لیزر در آن رخ می دهد . الکترونهای آزاد از ناحیه n و از طریق این منطقه به ناحیه p مهاجرت می کنند . الکترون هنگام ورود به منطقه اتصال ، انرژی کسب می نماید و هنگامی که می خواهد به ناحیه p داخل شود، این انرژی را به صورت فوتون از دست می دهد . اگر ناحیه p به قطب مثبت و ناحیه n به قطب منفی یک منبع الکتریکی وصل شود ، الکترونها از ناحیه n به طرف ناحیه p حرکت کرده و باعث می شوند تا در منطقه اتصال، غلظت زیادی از مواد فعال به وجود آید. با از دست دادن فوتون، یک تابش الکترومغناطیس حاصل می گردد . چنانچه دو انتهای منطقه اتصال را صیقل دهند آنگاه یک کاواک لیزری به وجود خواهد آمد. اصولا این نوع لیزرها به گونه ای ساخته می شوند که با استفاده از ضریب شکست دو جزء p و n ، کار تشدید پرتو لیزر انجام می شود . یکی از نقاط ضعف لیزرهای نیم رسانا همین است، زیرا  با تغییر دما، میزان ضریب شکست و بالطّبع خواص پرتو حاصله تفاوت خواهد کرد . به همین دلیل لیزرهای دیودی نسبت به تغییرات دما بسیار حساس هستند .

در یک نوع از این لیزرها، از بلورگالیم – آرسنید استفاده می شود که در آن تلوریم ورودی به عنوان ناخالصی وارد می شوند ، هنگامی که در بلور فوق به جای برخی از اتمهای آرسنیک ، اتم تلوریم قرار داده شود ، جسم حاصل نیمه رسانایی از نوع n بوده و وقتی که اتمهای روی  مستقر می گردند ماده به دست آمده از خود خاصیت نیمه رسانای p را نشان خواهد داد .

در حال حاضر در آزمایشگاه های پژوهشی جنرال موتور از یک لیزر دیودی به منظور مطالعه نمونه های بیولوژیکی و تشخیص طبّی استفاده می شود. قدرت جداسازی طیفی این لیزر حدودا cm-1 -4 10 بوده که یک منبع تک فام مناسب در ناحیه فرو سرخ می باشد و تشخیص طیفی مولکولهای ایزوتوپی توسط آن به سهولت انجام می گیرد .  

مرجع

لیست آنیون ها و کاتیون

لیست آنیون ها و کاتیون هایی که دانش آموزان و داوطلبان کنکور در درس شیمی به آن نیاز دارند .

 با پوزش از این که در کپی کردن جدول در صفحه بار یون ها جابجا شده و به اشتباه در سمت چپ نماد یون قرار گرفته است . اگر راهی برای اصلاح آن می دانید اطلاع دهید تا ایراد را برطرف کنم .

نام کاتیون

نماد شیمیائی کاتیون

نام آنیون

نماد شیمیائی آنیون

هیدروژن

H+

هیدرید

H-

لیتیم

Li+

فلوئورید

F-

سدیم

Na+

کلرید

Cl-

پتاسیم

K+

برمید

Br-

روبیدیم

Rb+

یدید

I-

سزیم

Cs+

هیپو کلریت

ClO-

آمونیوم

NH4+

کلریت

ClO2-

مس ( I )

Cu+

کلرات

ClO3-

نقره

Ag+

پرکلرات

ClO4-

جیوه ( I )

Hg22+

پربرومات

BrO4-

منیزیم

Mg2+

یدات

IO3-

کلسیم

Ca2+

هیدروکسید

OH-

استرانسیم

Sr2+

سیانید

CN-

باریم

Ba2+

هیدروژن سولفید

HS-

تیتانیم ( II )

Ti2+

هیدروژن کربنات

HCO3-

کروم ( II )

Cr2+

نیتریت

NO2-

منگنز ( II )

Mn2+

نیترات

NO3-

آهن ( II )

Fe2+

دی هیدروژن فسفات

H2PO4-

کبالت ( II )

Co2+

دی هیدروژن فسفیت

H2PO3-

نیکل ( II )

Ni2+

دی هیدروژن هیپو فسفیت

H2PO2-

مس ( II )

Cu2+

هیدروژن سولفات

HSO4-

روی

Zn2+

پرمنگنات

MnO4-

قلع ( II )

Sn2+

فرمات

HCOO-

سرب ( II )

Pb2+

استات

CH3COO-

کادمیم

Cd2+

بنزوآت

C6H5COO-

جیوه ( II )

Hg2+

متوکسی

CH3O-

اسکاندیم

Sc3+

اتوکسی

C2H5O-

وانادیم

V3+

آزید

N3-

کروم ( III )

Cr3+

اکسید

O2-

منگنز ( III )

Mn3+

سولفید

S2-

آهن ( III )

Fe3+

پراکسید

O22-

کبالت ( III )

Co3+

کربنات

CO32-

آلومینیم

Al3+

هیدروژن فسفات

HPO42-

گالیم

Ga3+

هیدروژن فسفیت

HPO32-

بیسموت

Bi3+

سولفیت

SO32-

قلع ( IV )

Sn4+

سولفات

SO42-

سرب ( IV )

Pb4+

منگنات

MnO42-

 

 

اگزالات ( اکسالات )

C2O42-

 

 

کرومات

CrO42-

 

 

دی کرومات

Cr2O72-

 

 

نیترید

N3-

 

 

فسفید

P3-

 

 

آرسنید

As3-

 

 

فسفات

PO43-

 

 

آرسنات

AsO43-

 

مرجع

سایت بسیار جالب علم شیمی

مطالب و مقالات متنوع شیمی را در سایت زیر جستجو کنید

 http://www.rsc.org/Publishing/ChemScience/index.asp 

 

http://www.rsc.org/

بیو شیمی(زیست شیمی)

گسترش سریع علم و تکنولوژی زیست‌شیمی در سالهای اخیر، پژوهشگران را قادر ساخته که به بسیاری از سوالات و اشکالات اساسی در مورد زیست‌شناسی و علم پزشکی پاسخ بدهند. چگونه یک تخم حاصل از لقاح گامت های نر و ماده به سلول های ماهیچه‌ای، مغز و کبد تبدیل می‌شود؟ به چه صورت سلول ها با همدیگر به صورت یک اندام پیچیده درمی‌آیند؟ چگونه رشد سلولها کنترل می‌شود؟ علت سرطان چیست؟ سازوکار حافظه کدام است؟ اساس مولکولی روان‌گسیختگی (شیزوفرنی) چیست؟
مدلهای مولکولی ساختمان سه بعدی
وقتی ارتباط سه بعدی بیومولکولها و نقش بیولوژیکی آنها را بررسی می‌کنیم، سه نوع مدل اتمی برای نشان دادن ساختمان سه بعدی مورد استفاده قرار می‌گیرد.
مدل فضاپرکن (Space _ Filling) این نوع مدل، خیلی واقع بینانه و مصطلح است. اندازه و موقعیت یک اتم در مدل فضا پرکن بوسیله خصوصیات باندها و شعاع پیوندهای واندروالسی مشخص می‌شود. رنگ مدلهای اتم طبق قرارداد مشخص می‌شود. مدل گوی و میله (ball _ and _ Stick) این مدل به اندازه مدل فضا پرکن، دقیق و منطقی نیست. برای اینکه اتمها به صورت کروی نشان داده شده و شعاع آنها کوچکتر از شعاع واندروالسی است.


مدل اسکلتی (Skeletal) ساده‌ترین مدل مورد استفاده است و تنها شبکه مولکولی را نشان می‌دهد و اتمها به وضوح نشان داده نمی‌شوند. این مدل، برای نشان دادن ماکرومولکولهای بیولوژیکی از قبیل مولکولهای پروتیینی حاوی چندین هزار اتم مورد استفاده قرار می‌گیرد. فضا در نشان دادن ساختمان مولکولی، بکار بردن مقیاس اهمیت زیادی دارد. واحد آنگستروم، بطور معمول برای اندازه‌گیری طول سطح اتمی مورد استفاده قرار می‌گیرد. برای مثال، طول باند C _ C، مساوی ۱،۵۴ آنگستروم می‌باشد. بیومولکولهای کوچک، از قبیل کربوهیدراتها و اسیدهای آمینه، بطور تیپیک، طولشان چند آنگستروم است. ماکرومولکولهای بیولوژیکی، از قبیل پروتیینها، ۱۰ برابر بزرگتر هستند. برای مثال، پروتیین حمل کننده اکسیژن در گلبولهای قرمز یا هموگلوبین، دارای قطر ۶۵ آنگستروم است. ماکرومولکولهای چند واحدی ۱۰ برابر بزرگتر می‌باشند. ماشینهای سنتز کننده پروتیین در سلولها یا ریبوزومها، دارای ۳۰۰ آنگستروم طول هستند. طول اکثر ویروسها در محدوده ۱۰۰ تا ۱۰۰۰ آنگستروم است. سلولها بطور طبیعی ۱۰۰ برابر بزرگتر هستند و در حدود میکرومتر (μm) می‌باشند. برای مثال قطر گلبولهای قرمز حدود ۷μm است. میکروسکوپ نوری حداقل تا ۲۰۰۰ آنگستروم قابل استفاده است. مثلا میتوکندری را می‌توان با این میکروسکوپ مشاهده کرد. اما اطلاعات در مورد ساختمانهای بیولوژیکی از مولکولهای ۱ تا آنگستروم با استفاده از میکروسکوپ الکترونی X-ray بدست آمده است. مولکولهای حیات ثابت می‌باشند.
زمان لازم برای انجام واکنشهای زیست‌شیمیایی
واکنش‌های شیمیایی در سامانه‌های زیستی به وسیله آنزیمها کاتالیز می‌شوند. آنزیمها سوبستراها را در مدت میلی ثانیه به محصول تبدیل می‌کنند. سرعت بعضی از آنزیمها حتی سریعتر نیز می‌باشد، مثلا کوتاهتر از چند میکروثانیه. بسیاری از تغییرات فضایی در ماکرومولکولهای بیولوژیکی به سرعت انجام می‌گیرد. برای مثال، باز شدن دو رشته هلیکسی DNA از همدیگر که برای همانندسازی و رونویسی ضروری است، یک میکروثانیه طول می‌کشد. جابجایی یک واحد (Domain) از پروتیین با حفظ واحد دیگر، تنها در چند نانوثانیه اتفاق می‌افتد. بسیاری از پیوندهای غیر کووالان مابین گروههای مختلف ماکرومولکولی در عرض چند نانوثانیه تشکیل و شکسته می‌شوند. حتی واکنشهای خیلی سریع و غیر قابل اندازه گیری نیز وجود دارد. مشخص شده است که اولین واکنش در عمل دیدن، تغییر در ساختمان ترکیبات جذب کننده فوتون به نام رودوپسین می‌باشد که در عرض اتفاق می‌افتد.
انرژی ما بایستی تغییرات انرژی را به حوادث مولکولی ربط دهیم. منبع انرژی برای حیات، خورشید است. برای مثال، انرژی فوتون سبز، حدود ۵۷ کیلوکالری بر مول (Kcal/mol) بوده و ATP، فرمول عمومی انرژی، دارای انرژی قابل استفاده به اندازه ۱۲ کیلوکالری بر مول می‌باشد. برعکس، انرژی متوسط هر ارتعاش آزاد در یک مولکول، خیلی کم و در حدود ۰،۶ کیلوکالری بر مول در ۲۵ درجه سانتیگراد می‌باشد. این مقدار انرژی، خیلی کمتر از آن است که برای تجزیه پیوندهای کووالانسی مورد نیاز است، (برای مثال ۸۳Kcal/mol برای پیوند C _ C). بدین خاطر، شبکه کووالانسی بیومولکولها در غیاب آنزیمها و انرژی پایدار می‌باشد. از طرف دیگر، پیوندهای غیر کووالانسی در سیستمهای بیولوژیکی بطور تیپیک دارای چند کیلوکالری انرژی در هر مول می‌باشند. بنابراین انرژی حرارتی برای ساختن و شکستن آنها کافی است. یک واحد جایگزین در انرژی، ژول می‌باشد که برابر ۰،۲۳۹ کالری است.
ارتباطات قابل بازگشت بیومولکولها
ارتباطات قابل برگشت بیومولکولها از سه نوع پیوند غیر کووالانسی تشکیل شده است. ارتباطات قابل برگشت مولکولی، مرکز تحرک و جنبش موجود زنده است. نیروهای ضعیف و غیر کووالان نقش کلیدی در رونویسی DNA، تشکیل ساختمان سه بعدی پروتیینها، تشخیص اختصاصی سوبستراها بوسیله آنزیمها و کشف مولکولهای سیگنال ایفا می‌کنند. به علاوه، اکثر مولکولهای زیستی و فرآیندهای درون‌مولکولی، بستگی به پیوندهای غیر کووالانی همانند پیوندهای کووالانی دارند. سه پیوند اصلی غیر کووالان عبارت است از: پیوندهای الکترواستاتیک، پیوندهای هیدروژنی و پیوندهای واندروالسی آنها از نظر ژیومتری، قدرت و اختصاصی بودن با هم تفاوت دارند. علاوه از آن، این پیوندها به مقدار زیادی از طرق مختلف در محلولها تحت تاثیر قرار می‌گیرند. 

منبع:شیمیدان های دانشگاه تبریز

سرب

                          

اطلاعات اولیه

سرب ، عنصرشیمیاییاست که در  تناوبی جدولبا نشان Pb و عدداتمی 82 وجود دارد. سرب ، عنصری سنگین ، سمی و چکش‌خوار است که دارای رنگ خاکستری کدری می‌باشد. هنگامیکه تازه تراشیده شده ، سفید مایل به آبی است، اما در معرض هوا به رنگ خاکستری تیره تبدیل می‌شود. از سرب در سازه‌های ساختمانی ، خازنهای اسید سرب ، ساچمه و گلوله استفاده شده و نیز بخشی از آلیاژهای لحیم ، پیوتر و آلیاژهای گدازپذیر می‌باشد. سرب سنگین‌ترین عنصر پایدار است.

تاریخچـــــــه

به‌علت فراوانی سرب ( هنوز هم اینگونه است ) ، تهیه آسان ، کار کردن آسان با آن ، انعطاف‌پذیری و چکش‌خواری بالا و پالایش راحت ، حداقل از 7000 سال پیش مورد استفاده بشر می‌باشد. در کتاب خروج ( بخشی از انجیل ) به این عنصر اشاره شده است. کیمیاگران می‌پنداشتند سرب قدیمی‌ترین فلز بوده و به سیاره زحل مربوط می‌شود. لوله‌های سربی که نشانه‌های امپراتوری روم را حمل می‌کردند، هنوز هم بکار می‌روند. نشان Pb برای سرب خلاصه نام لاتین آن plumbum است. در اواسط دهه 80 تغییر مهمی در الگوهای پایان استفاده از سرب بوجود آمده بود. بیشتر این تغییر ناشی از پیروی مصرف کنندگان سرب آمریکا از قوانین زیست محیطی بود که بطرز قابل ملاحظه ای استفاده از سرب را در محصولات بجز باطری از جمله گازوئیل ، رنگ ، اتصالات و سیستمهای آبی کاهش داده یا حتی حذف کرد.

خصوصیات قابل توجه

سرب فلزی است براق ، انعطاف پذیر ، بسیار نرم ، شدیدا" چکش خوار و به رنگ سفید مایل به آبی که از خاصیت هدایت الکتریکی پایینی برخوردار می‌باشد. این فلز حقیقی به‌شدت در برابر پوسیدگی مقاومت می‌کند و به همین علت از آن برای نگهداری مایعات فرسایشگر ( مثل اسید سولفوریک ) استفاده می‌شود. با افزودن مقادیر خیلی کمی آنتیموان یا فلزات دیگر به سرب می‌توان آنرا سخت نمود.

کاربردها

  • کاربردهای اولیه سرب عبارت بودند از: سازه های ساختمانی ، رنگدانه‌های مورد استفاده در لعاب سرامیک و لوله‌های انتقال آب. کاخها و کلیساهای بزرگ اروپا در وسایل تزئینی ، سقفها ، لوله‌ها و پنجره‌هایشان دارای مقادیر قابل توجهی سرب هستند. این فلز ( در حالت عنصری ) پس از آهن ، آلومینیوم ، مس و روی بیشترین کاربرد را دارد.
  • در باطری‌های اسید سرب ، در اجزای الکترونیکی ، روکش کابل ، مهمات ، در شیشه CTR ها ، سرامیک ، شیشه‌های سُرب‌دار ، لوله‌های سربی ( اگرچه استفاده از اتصالات سربی در لوله های آب آشامیدنی در دهه 90 در آمریکا قانونی شد ، امروزه کاربرد آنچنانی ندارند ) ، در رنگها ( از سال 1978 در آمریکا و به‌تدریج از دهه 60 تا دهه 80 در انگلستان ممنوع شد، اگرچه رنگ سطوح قدیمی می‌توانست تا 50% وزن از سرب باشد ) ، آلیاژها ، پیوتر ، اتصالات و مواد پر کننده دندان.
    همچنین در بامها بعنوان درزگیر برای محافظت اتصالات در برابر باران مورد استفاده قرار می‌گیرد. در گازوئیل ( بنزین) بعنوان تترا اتیل و تترا متیل سرب برای کاهش صدای موتور کاربرد دارد. ( pre-detonation ، pre-ignition و pinking هم نامیده می‌شود ). فروش بنزین سربدار در آمریکا از سال 1986 و در اتحادیه اروپا از سال 1999 ممنوع شد.

جداسازی

سرب محلی در طبیعت یافت می‌شود، اما کمیاب است. امروزه معمولا" سرب در کانی‌هایی همراه با روی ، نقره و ( بیشتر) مس یافت می‌شود و به همراه این مواد جدا می‌گردد. ماده معدنی اصلی سرب گالن (PbS) است که حاوی 86,6% سرب می‌باشد. سایرکانیهای مختلف و معمول آن سروسیت ( PbCO3 ) و انگلسیت ( PbSO4 ) می‌باشند. اما بیش از نیمی از سربی که امروزه مورد استفاده قرار می‌گیرد، بازیافتی است.
سنگ معدن بوسیله مته یا انفجار جدا شده ، سپس آنرا خرد کرده و روی زمین قرار می‌دهند. بعد از آن ، سنگ معدن تحت تاثیر فرآیندی قرار می‌گیرد که در قرن نوزدهم در Broken Hill استرالیا بوجود آمد. یک فرآیند شناور سازی ، سرب و دیگر مواد معدنی را از پس‌مانده‌های سنگ جدا می‌کند تا با عبور سنگ معدن ، آب و مواد شیمیایی خاص از تعدادی مخزن که درون آنها دوغاب همیشه مخلوط می‌شود، عصاره ای بوجود آید.
درون این مخزنها هوا جریان یافته و سولفید سرب به حبابها می‌چسبد و بصورت کف بالا آمده که می‌توان آنرا جدا نمود. این کف ( که تقریبا" دارای 50% سرب است ) خشک شده ، سپس قبل از پالایش به منظور تولید سرب 97% سینتر می‌شوند. بعد ازآن سرب را طی مراحل مختلف سرد کرده تا ناخالصیهای سبکتر بالا آمده و آنها را جدا می‌کنند. سرب مذاب با گداختن بیشتر بوسیله عبور هوا از روی آن وتشکیل لایه ای از تفاله فلز که حاوی تمامی ناخالصیهای باقی مانده می‌باشد، تصفیه شده و سرب خالص 99,9% بدست می‌آید.

ایزوتوپهــــــــــــا

سرب بطور طبیعی دارای چهار ایزوتوپ پایدار است : Pb-204(1.4%)-Pb-206(24.1%)-Pb-207(22.1%)-Pb-208(52.4%). سرب 206 ، 207 و 208 همگی پرتوزا بوده ، محصولات پایانی زنجیره فروپاشی پیچیده ای هستند که به ترتیب در U-238 ، U-235 و Th-232 رخ می‌دهند.

هشدارهــــــــــا

سرب فلز سمی است که به پیوندهای عصبی آسیب رسانده ( بخصوص در بچه‌ها ) و موجب بیماریهای خونی و مغزی می‌شود. تماس طولانی با این فلز یا نمکهای آن ( مخصوصا" نمکهای محلول یا اکسید غلیظ آن PbO2 ) می‌تواند باعث بیماریهای کلیه و دردهای شکمی شود. به اعتقاد بعضی افراد استفاده تاریخی از سرب توسط امپراطوری روم برای لوله‌های آب ( و نمک آن ، استات سرب که بعنوان شیرین کننده شراب و به نام شکر سرب هم معروف است ) عامل دیوانگی بسیاری از امپراطوران بود. نگرانی درباره نقش سرب در عقب‌ماندگی ذهنی کودکان موجب کاهش استفاده از آن در سطح جهان گردید.
فروش رنگهای حاوی سرب در کشورهای صنعتی متوقف شده ، گرچه احتمالا" بسیاری از خانه‌های قدیمی هنوز دارای مواد سربی در رنگهایشان هستند. کلا" پیشنهاد می‌شود رنگهای قدیمی را با سمباده ازبین نبرند، چون این کار باعث ایجاد غباری قابل استنشاق می‌گردد. نمکهای سرب که در لعاب ظروف سفالی بکار می‌رود، گاهی اوقات ایجاد مسمومیت کرده‌اند، چون هنگامیکه در آنها اسید نوشیده می‌شود، مانند آبمیوه ها ، یونهای سرب از لعاب ظرف جدا می‌شوند. گفته می‌شود استفاده از سرب برای فشردن سیب جهت تهیه آب سیب ، عامل بیماری Devon colic می‌باشد.
گمان می‌رود سرب پیامدهای ناگواری برای دختران و خانمهای جوان داشته باشد به همین علت بسیاری از دانشگاهها در تجزیه و تحلیلهای دختران ، سرب را در اختیار آنها نمی‌گذارند. سرب در واقع برای ساخت مدادهای اولیه مورد استفاده قرار می‌گرفت، اگرچه در چند دهه اخیر مغز مدادها از گرافیت که شکل طبیعی کربن می‌باشد، ساخته شده است.

ریشه‌های کلمــــــه

واژه لاتین plumbum باعث شکل گیری اصطلاحات زیادی در زبان انگلیسی شده است:

  • Plumbing ( لوله کشی) یا سیستمی از لوله کشی. چون در گذشته لوله‌ها از سرب ساخته می‌شدند، این واژه ریشه در آن دوران دارد.
  • Plumb bob یا plummet ( شاغول کوچک) جسم فلزی باریک و نوک تیز که از وزن آن برای کشیده نگه داشتن ریسمان بصورت افقی استفاده می‌شود، اشاره به این حقیقت دارد که این شاغولها در آغاز از سرب ساخته می‌شدند.
  • Plumb wall نام آن به این علت است که از شاغول ( Plumb bob ) برای یافتن خط عمود استفاده می‌شود.
  • Plumbing the depths ( ژرف یابی ) از کاربرد وزنه سربی برای انداختن ژرف‌یاب تا انتهای آبها اقتباس شده است ( یا در انتهای قلاب ماهیگیری اگر آب واقعا" عمق داشته باشد! )
  • Plumb crazy احتمالا" چون مسمومیت سرب می‌تواند منجر به دیوانگی شود، این واژه بدست آمده یا بنابر OED ، از یک مفهوم آمریکایی plum ( مشتق از واژه plumb ) به معنی " کاملا" برگرفته شده است.
  • Plumbism (مسمومیت سربی) اصطلاح پزشکی به معنی مسمومیت سربی می‌باشد.
  • Aplomb ( اعتماد به نفس ) از واژه فرانسوی plomb برگرفته شده که به معنی دقیقا" عمود و بنابراین مطمئن و خونسرد می‌باشد.

استانداردهای حفظ کیفیت هوا

حفظ کیفیت هوا عبارتی است که تمامی عملیات لازم را برای کنترل کیفیت اتمسفر توصیف می‌کند.


مقررات کنترل و سیاستهای کنترلی ، مجوز قانونی جهت اجرای سیاستهای کنترل ابداعات جدید ، مربوط به گازهای متصاعد شده در اتمسفر ، شبکه نظارت بر اتمسفر ، سیستم اطلاعات حفاظتی ، تاسیس سازماندهی نهادها ، سیستم مربوط به تجزیه و تحلیل شکایات درباره آلودگی هوا و عملیات نمونه‌برداری از گازهای خازج شونده از دودکش ، از جمله عناصر ضروری حفظ کیفیت هوا به شمار می‌روند.


کیفیت هوای اتمسفر و استانداردهای مربوط به گازهای آزاد شده شامل استانداردهای اول که متکی بر معیارهای کیفیت هوا ، ایمنی و حفظ سلامت جامعه را در دامنه‌ای گسترده رعایت نموده است در حالی که استانداردهای ثانوی که آنها نیز متکی بر معیارهای کیفیت هوا هستند جهت حفظ رفاه عموم از قبیل کارخانه‌ها ، حیوانات ، اموال و مواد پی‌ریزی شده‌اند. برای پایین آوردن آلودگی به کمتر از استانداردهای کیفیت هوای اتمسفر ، استانداردهای ملی مواد متصاعد شده با تکیه بر در دسترس بودن تکنولوژی کنترل وضع گردیدند.


● شاخصهای کیفیت هوا
آژانس حفاظت محیط زیست ، شورای کیفیت محیط زیست ، در توسعه شاخص استانداردهای آلاینده (PSI) به منظور گردآوری عوامل پیچیده‌ای که مجموعا کیفیت هوا را بوجود می‌آورند، با یکدیگر همکاری کرده و این شاخص اندازه‌ گیریهای مربوط به هوا را برای ۵ معیار اصلی آلاینده‌ها از صفر تا ۵۰۰ درجه بندی می‌نمایند. آلاینده‌های مربوط عبارتند از: منو اکسید کربن ، دی اکسید سولفور ، کل ذرات معلق اکسید کننده‌های فتوشیمیایی یا ازن و دی اکسیدکربن اگر غلظت هر یک از آلاینده اصلی بیش از مقدار پیش بینی شده برای کیفیت هوا در هر ایستگاه کنترل آلودگی باشد در آن روز معین ، کیفیت هوا درناحیه مورد نظر ناسالم است.


حتی اگر غلظت چهار آلاینده اصلی دیگر پایینتر از حد استاندارد ملی باشد. تنها هنگامی که اندازه گیری مربوط به همه پنج آلاینده‌ها دارای مقدار شاخص یا کمتر از مقداری که کمتر از نصف حد تعیین شده توسط استاندارد است باشد، اصطلاحا گفته می‌شود که کیفیت هوا خوب است.
 

▪ اعمال استانداردها اعمال استانداردهای کیفیت هوای اتمسفر ، استانداردهای آزاد شدن گازها برای صنایع جدید و ساکن موجود و استانداردهای آزاد شدن موادی برای آلاینده‌های خطرناک وظیفه نهادهای ایالتی شمرده می‌شود. علاوه بر کنترل منابع ساکن موجود نهادهای ایالتی کنترل آلودگی هوا نیز باید به بررسی و مرور طرحهای ارائه شده برای توالی منابع جدید ساکن بپردازند. نهادهای ایالتی برای رفع مقررات ضروری طرح‌ریزی شده جمعیت جلوگیری از رسیدن غلظتهای آلاینده‌ها در اتمسفر به حدودی که برای سلامت انسان خطرناک هستند، دارای اختیار و قدرت می‌باشند.


در وهله اول که به آن مرحله هوشیاری گفته می‌شود. اولین مرحله کنترل آغاز می‌شود. در مرحله هشدار بر عملکرد دستگاههای خاکستر ساز و وسائط نقلیه محدودیتهایی اعمال می‌شوند. در مرحله سوم ، علاوه بر تعیین حد اضطراری بر اجاقهای سرباز ، عملکرد خاکسترسازها ، واحدهای صنعتی و اتومبیلها کنترلهای شدید اعمال می‌شود. نهادهای ایالتی باید به کنترل انتشار گازهای آلاینده خطرناک بپردازد یعنی آن دسته از آلاینده‌هایی که می‌توانند در افزایش مرگ و میر یا شیوع بیماریهای جدی ناتوان کننده برگشت ناپذیر نقش داشته باشند.ایالتها باید به رعایت استانداردهای ملی مواد آزاد شده در اتمسفر ، وضع شده برای پنج ماده خطرناک (پنبه نسوز ، بریلیم ، جیوه ، وینیل کلراید و بنزن) ملزم باشند.


● منبع نشر آلاینده عبارتست از روشن کردن منابع آلودگی هوا در یک ناحیه مشخص و تعریف انواع و مقدار آلودگی که این منابع ممکن است بوجود آورند، نشر آلاینده‌ها ، تناوب ، تداوم و مقدار نسبی نشر آلودگی مربوط به هر منبع. پنج آلاینده صلی هوا که معمولا در یک منبع انتشار آلودگی در نظر گرفته می‌شوند، عبارتند از: منو اکسید کربن ، هیدروکربنها ، اکسیدهای نیتروژن و اکسیدهای گوگرد. با این وجود اندازه گیری اکسید کننده‌های فتوشیمیایی (یا ازن) در شاخصهای استاندارد آلاینده‌ها جایگزین اندازه گیری هیدروکربنها در بسیاری از منابع نشر آلودگی شده است.
 

● منابع نشر آلودگی ▪ منابع نشر آلودگی عبارتند از:
    ـ حمل ونقل وسائط نقلیه یا منابع متحرک احتراق
    ـ منابع ساکن احتراق
    ـ فرآیندهای صنعتی
    ـ دفع مواد زاید جامد و فعالیتهای متفرقه.


آگاهیهای مربوط به کمیت و کیفیت موارد مورد استفاده فرآیند شده سوخته شده در چهار گروه منبع را از طریق پرسشنامه‌ها ، تماس مستقیم با مدیران ، اتاقهای بازرگانی یا سازمانهای تحقیقاتی ، مطبوعات و مجلات ، منابع اطلاعاتی ، آژانسهای ایالتی و یا منابع مطلع می‌توان بدست آورد. با جمع آوری اطلاعات از راههای مذکور می‌توان از این آگاهیها با توجه به عامل نشر برای تعیین آلودگی در یک جامعه مشخص و همچنین برای محاسبه سرعت نشر آلاینده استفاده کرد.

تصفیه پساب پالایشگاههای نفت

لطفا به این لینک مراجعه نمایید

تبدیل واحدها در محاسبات بر اساس مول

 مول واحد اصلی اندازه گیری در شیمی است و به صورت زیر تعریف می شود.

یک مول برابر است با تعداد 1023×022/6 ذره از هر ماده، خواه این ماده عنصر باشد یا ترکیب. مثلا وقتی می گوییم یک مول آلومینیم یعنی مقداری آلومینیم که در آن تعداد 1023×022/6  اتم از این فلز وجود داشته باشد، یا وقتی می گوییم یک مول آب یعنی مقداری آب که در آن تعداد 1023×022/6  مولکول آب H2O  وجود داشته باشد. پس مول یک واحد شمارش است و باید بتوانیم در محاسبات آن را بر حسب واحدهای دیگر مثل جرم و حجم بیان کنیم. رابطه واحد مول با واحدهای دیگر به صورت زیر می باشد.

یک مول = تعداد 1023×022/6 ذره از ماده

یک مول = جرم اتمی یا مولکولی ماده بر حسب گرم

یک مول = حجمی برابر 4/22 لیتر یا 22400  میلی لیتر از یک ماده در حالت گاز در شرایط استاندارد.

مول را با واحدهای دیگری چون اتم گرم ، مولکول گرم و یون گرم نیز بیان می کنند. برای اتمها یک مول با یک اتم گرم برابر است، برای مولکولها یک مول با یک مولکول گرم برابر است و برای یونها یک مول با یک یون گرم برابر است.

مثال :‌ یک مول گاز آرگونA r برابر است با یک اتم گرم گاز آرگونA r .

        یک مول کربن تترا کلرید CCl4 برابر است با یک مولکول گرم کربن تترا کلرید CCl4 .

        یک مول یون Fe3+  آهن III  برابر است با یک یون گرم Fe3+  آهن III .

بر اساس مطالب بالا می توان رابطه زیر را نوشت که از آن به عنوان کلید تبدیل واحدها استفاده می کنیم :

یک مول = جرم مولی بر حسب گرم = 4/22 لیتر یا 22400 میلی لیتر گاز در شرایط استاندارد = تعداد 1023×022/6 ذره از هر ماده

 بنابر این با داشتن یکی از مقدارهای داده شده می توان دیگر مقادیر را با استفاده از ضرایب تبدیل بین این واحدها بدست آورد.

مثال : حساب کنید 2/0 مول گاز کربن دی اکسید CO2  ( جرم مولی برابر 44 ) :

آ) چند گرم جرم دارد ؟                 ب) در شرایط استاندارد چند لیتر حجم اشغال می کند ؟                        ج) دارای چند مولکول CO2  می باشد ؟

 جواب قسمت آ : وقتی جرم مولی این گاز برابر 44 ، است. می توان گفت :                                                      44 گرم گاز کربن دی اکسید = یک مول گاز کربن دی اکسید

که ضریب تبدیل از این تساوی با توجه به واحد معلوم یعنی 2/0 مول کربن دی اکسید، بدست می آید.

جواب قسمت ب : بر اساس کلید داده شده در تبدیل واحدها رابطه بین حجم گاز و مول در شرایط استانداد به صورت زیر است.

یک مول گاز کربن دی اکسید = 4/22 لیتر گاز کربن دی اکسید در شرایط استاندارد.

که ضریب تبدیل بر اساس واحد معلوم از آن بدست می آید.                             

جواب قسمت ج : بر اساس کلید داده شده در تبدیل واحدها رابطه بین تعداد مولکولهای کربن دی اکسید و مول آن به صورت زیر است.

یک مول گاز کربن دی اکسید = 1023×022/6 مولکول گاز کربن دی اکسید CO2 .

که ضریب تبدیل بر اساس واحد معلوم از آن بدست می آید.  

مرجع

تولید چسپ

چسب‌های بسیاری برای متصل کردن اجسام مشابه یا غیر مشابه در دسترس هستند. امروزه تقریبا استفاده از چسباننده‌های طبیعی مثل سریش بجز موارد استفاده خاصی منسوخ شده است. در عوض هر روز شاهد تولید و سنتز چسب‌های جدیدی هستیم که منشأ پلیمری دارند. چسب‌ها در اشل صنعتی به شیوه‌های گوناگونی تهیه می‌شوند که در این بحث برخی از مهمترین روشها را معرفی می‌کنیم.

پخت یا پروراندن رزین چسب به صورت یک جسم جامد
اپوکسی‌ها معروفترین چسبهای این گروه هستند که با استفاده از رزینهای سیکلوآلیفاتیک ، طوری فرمولبندی می‌شوند که در دماهای بالا قابل استفاده باشند. برای سنتز چسبهای قوی و نیمه انعطاف‌پذیر از رزینهای اپوکسی با عوامل پخت پلی آمین یا پلی آمید استفاده می‌شود و بیشتر اپوکسی‌ها بدون استفاده از مواد افزودنی هم چسبندگی خوبی دارند. زمان پخت می‌تواند از ثانیه‌ها تا روزها طول بکشد که این امر به کاتالیزورها و دما بستگی دارد.

اپوکسی فنولی با استفاده از این چسبها می‌توان اتصالاتی پدید آورد که تا 315ºC پایدار هستند. این چسبها در دماهای بالا پرورده می‌شوند و از آنها برای پیوند ساختمانی و لانه زنبوری استفاده می‌شود. از دیگر چسبهای این گروه می‌توان از پلی استرها (که ارزان قیمت و زودگیر و شکننده هستند)، سیلیکونها ، سیانوآکریلاتها و آکریلیها ، نام برد.
 

تبخیر حلال از محلول پلیمر گرمانرم
مواد پلیمری حل شده در حلالها می‌توانند چسبهای مفیدی تشکیل دهند. با تبخیر حلال ، پلیمر گرمانرم جامدی حاصل می‌شود که به چسب حلال معروف است. از این گروه می‌توان نیتروسلولز را نام برد که سالها محلول 10 تا 25 در صد آن به عنوان چسب هواپیما و یا برای مصارف خانگی استفاده می‌شد.
آکریلیها ، محلول رزینهای آکریلیک پرورده شده هستند و به چسبهای پلاستیک مشهورند و برای متصل کردن پلاستیکهای ABS ، پلی استیرن و آکریلی مؤثرند. سیمانهای لاستیکی هم جزو چسبهای حلال می‌باشند.
 

تبخیر آب از یک شیرابه پلیمری
شیرابه‌ها از ذرات کوچک پلیمر پرورانده شده معلق در آب تشکیل شده‌اند و در موقع تبخیر آب ، ذرات بوسیله نیروهای واندرواسی به یکدیگر متصل می‌شوند. رزین خشک شده ، دیگر در آب حل نمی‌شود. از این چسبها می‌توان پلی وینیل استات را نام برد که برای اتصال قطعات چوبی بکار می‌رود و به صورت شیرابه (محلول در آب) عرضه می‌شود و به نام چسب سفید یا چسب چوب معروف است.  

سرد کردن پلیمر گرمانرم ذوب شده
پلیمرهایی که در دمای مناسب ذوب می‌شوند و دارای نیروهای جاذبه زیادی می‌باشند، بعنوان چسب داغ ذوب شناخته می‌شوند. از انواع پلی استرهای گرمانرم ، پلی آمیدها و پلی اتیلنها ، بعنوان چسب داغ ذوب استفاده می‌شود. این چسبها به صورت لوله‌هایی با ضخامت کم در بازار موجود می‌باشد. در اثر حرارت دادن ، لوله ذوب و جاری می‌شود و با مالیدن به سطح جسم و فشردن سطوح به همدیگر ، اتصال در ضمن سرد شدن انجام می‌شود.

عوامل اتصال دهنده
موادی که با شیمی دوگانه وجود دارند، می‌توانند به چسبندگی کمک کنند. این ترکیبات دارای دو گروه عاملی متفاوت در دو انتها می‌باشند و معمولیترین آنها عوامل اتصال دهنده سیلان می‌باشند. یک انتهای این ترکیبات ، تولید چسبندگی با شیشه یا مواد معدنی دیگر می‌کند و انتهای دیگر از نظر شیمیایی فعال می‌باشد.

اخیرا ترکیباتی به نام تیتاناتها وارد بازار شده‌اند که مانند سیلان دارای شیمی دوگانه هستند و شبیه آنها عمل می‌کنند، اما برتریهایی هم در برخی خواص نسبت به سیلانها دارند

برج تقطیر (Distillation Tower)

تقطیر، در واقع ، جداسازی فیزیکی برشهای نفتی است که اساس آن ، اختلاف در نقطه جوش هیدروکربنهای مختلف است. هر چه هیدروکربن سنگینتر باشد، نقطه جوش آن زیاد است و هر چه هیدروکربن سبکتر باشد، زودتر خارج می‌شود. اولین پالایشگاه تاسیس شده در جهان ، در سال 1860 در ایالت پنسیلوانیای آمریکا بوده است. نفت خام ، از کوره‌های مبدل حرارتی عبور کرده، بعد از گرم شدن وارد برجهای تقطیر شده و تحت فشار و دما به دو صورت از برجها خارج می‌شود و محصولات بدست آمده خالص نیستند. انواع برجهای تقطیر در زیر توضیح داده می‌شوند.

 

« برجهای تقطیر با سینی کلاهکدار»

در برجهای تقطیر با سینی کلاهکدار ، تعداد سینی ها در مسیر برج به نوع انتقال ماده و شدت تفکیک بستگی دارد. قطر برج و فاصله میان سینی‌ها به مقدار مایع و گاز که در واحد زمان از یک سینی می‌گذرد، وابسته است. هر یک از سینی‌های برج ، یک مرحله تفکیک است. زیرا روی این سینی ها ، فاز گاز و مایع در کنار هم قرار می‌گیرند و کار انتقال ماده از فاز گازی به فاز مایع یا برعکس در هر یک از سینی‌ها انجام می‌شود. برای اینکه بازدهی انتقال ماده در هر سینی به بیشترین حد برسد، باید زمان تماس میان دو فاز و سطح مشترک آنها به بیشترین حد ممکن برسد.

 

بخشهای مختلف برج تقطیر با سینی کلاهکدار:

1) بدنه و سینی ها : جنس بدنه معمولا از فولاد ریخته است. جنس سینی‌ها معمولا از چدن است. فاصله سینی‌ها را معمولا با توجه به شرایط طراحی ، درجه خلوص و بازدهی کار جداسازی بر می‌گزینند. در بیشتر پالایشگاههای نفت ، برای برجهای تقطیر به قطر 4 ft فاصله میان 50 - 18  سانتیمتر قرار می‌دهند. با بیشتر شدن قطر برج ، فاصله بیشتری نیز برای سینی‌ها در نظر گرفته می‌شود.

2) سرپوشها یا کلاهکها : جنس کلاهکها از چدن می‌باشد. نوع کلاهکها با توجه به نوع تقطیر انتخاب می‌شود و تعدادشان در هر سینی به بیشترین حد سرعت مجاز عبور گاز از سینی بستگی دارد.

3) موانع یا سدها : برای کنترل بلندی سطح مایع روی سینی ، به هر سینی سدی به نام  وییر (Wier)  قرار می‌دهند تا از پایین رفتن سطح مایع از حد معنی جلوگیری کند. بلندی سطح مایع در روی سینی باید چنان باشد که گازهای بیرون آمده از شکافهای سرپوشها بتوانند از درون آن گذشته و زمان گذشتن هر حباب به بیشترین حد ممکن برسد. بر اثر افزایش زمان گذشتن حباب از مایع ، زمان تماس گاز و مایع زیاد شده ، بازدهی سینی‌ها بالا می‌رود.

 

« برجهای تقطیر با سینی‌های مشبک»

در برجهای با سینی مشبک ، اندازه مجراها یا شبکه‌ها باید چنان برگزیده شوند که فشار گاز بتواند گاز را از فاز مایع با سرعتی مناسب عبور دهد. عامل مهمی که در بازدهی این سینی ها موثر است، شیوه کارگذاری آنها در برج است. اگر این سینی ها کاملا افقی قرار نداشته باشند، بلندی مایع در سطح سینی یکنواخت نبوده و گذر گاز از همه مجراها یکسان نخواهد بود.
خورندگی فلز سینی ها هم در این نوع سینی ها اهمیت بسیار دارد. زیرا بر اثر خورندگی ، قطر سوراخها زیاد می‌شود که در نتیجه مقدار زیادی بخار با سرعت کم از درون آن مجاری خورده شده گذر خواهد کرد. و می‌دانیم که اگر سرعت گذشتن گاز از حد معینی کمتر گردد، مایع از مجرا به سوی پایین حرکت کرده بازدهی کار تفکیک کاهش خواهد یافت.

 

« برجهای تقطیر با سینی‌های دریچه‌ای»

این نوع سینی ها مانند سینی های مشبک هستند. با این اختلاف که دریچه‌ای متحرک روی هر مجرا قرار گرفته است. درصنعت نفت، دو نوع از این سینی ها بکار می‌روند:

1) انعطاف پذیر : همانطور که از نام آن برمی‌آید، دریچه‌ها می‌توانند بین دو حالت خیلی باز یا خیلی بسته حرکت کنند.

2) صفحات اضافی : در این نوع سینیها ، دو دریچه یکی سبک که در کف سینی قرار می‌گیرد و دیگری سنگین که بر روی سه پایه‌ای قرار گرفته ، تعبیه شده است. هنگامی که بخار کم باشد، تنها سرپوش سبک به حرکت در می‌آید. اگر مقدار بخار از حد معینی بیشتر باشد، هر دو دریچه حرکت می‌کنند.

 

« مقایسه انواع گوناگون سینی‌ها»

در صنعت نفت ، انواع گوناگون سینی‌ها در برجهای تقطیر ، تفکیک و جذب بکار برده می‌شوند. ویژگیهایی که در گزینش نوع سینی برای کار معینی مورد توجه قرار می‌گیرد، عبارت است از: بازدهی تماس بخار و مایع ، ظرفیت سینی ، افت بخار در هنگام گذشتن از سینی ، زمان ماندن مایع بر روی سینی ، مشخصات مایع و ... . چون در صنعت بیشتر سینی‌های کلاهکدار بکار برده می‌شوند، برای مقایسه مشخصات سینی‌های دیگر ، آنها را نسبت به سینی‌های کلاهکدار ارزیابی می‌کنند.

 

« برجهای انباشته»

در برجهای انباشته ، بجای سینی‌ها از تکه‌ها یا حلقه‌های انباشتی استفاده می‌شود. در برجهای انباشته حلقه‌ها یا تکه‌های انباشتی باید به گونه‌ای برگزیده و در برج ریخته شوند که هدفهای زیر عملی گردد:

1) ایجاد بیشترین سطح تماس میان مایع و بخار

2) ایجاد فضا مناسب برای گذشتن سیال از بستر انباشته

 

« جنس مواد انباشتی»

این مواد باید چنان باشند که با سیال درون برج ، میل ترکیبی نداشته باشند.

 

« استحکام مواد انباشتی»

جنس مواد انباشتی باید به اندازه کافی محکم باشد تا بر اثر استفاده شکسته نشده و تغییر شکل ندهد.

 

« شیوه قرار دادن مواد انباشتی»

مواد انباشتی به دو صورت منظم و نامنظم درونبرج قرار می‌گیرند.

1) پر کردن منظم: از مزایای این نوع پر کردن، کمتر بودن افت فشار است که در نتیجه می‌شود حجم بیشتر مایع را از آن گذراند.

2) پر کردن نامنظم: از مزایای این نوع پر کردن ، می‌توان به کم هزینه بودن آن اشاره کرد. ولی افت فشار بخار در گذر از برج زیاد خواهد بود.

 

« مقایسه برجهای انباشته با برجهای سینی‌دار»

در برجهای انباشته ، معمولا افت فشار نسبت به برجهای سینی‌دار کمتر است. ولی اگر در مایع ورودی برج ذرات معلق باشد، برجهای سینی‌دار بهتر عمل می‌کنند. زیرا در برجهای انباشته ، مواد معلق ته‌نشین شده و سبب گرفتگی و برهم خوردن جریان مایع می‌گردد. اگر برج بیش از حد متوسط باشد، برج سینی‌دار بهتر است. زیرا اگر در برجهای انباشته قطر برج زیاد باشد، تقسیم مایع در هنگام حرکت از بستر انباشته شده یکنواخت نخواهد بود .در برجهای سینی‌دار می‌توان مقداری از محلول را به شکل فرایندهای کناری از برج بیرون کشید، ولی در برجهای انباشته این کار، شدنی نیست. کارهای تعمیراتی در درون برجهای سینی‌دار ، آسانتر انجام می‌گیرد. تمیز کردن برجهای انباشته ، از آنجا که باید پیش از هرچیز آنها را خالی کرده و بعد آنها را تمیز نمایم، بسیار پرهزینه خواهد بود.

منبع : http://miadsoft.blogfa.com

خوردگی فلزات

خوردگی ، ( Corrosion ) ، اثر تخریبی محیط برفلزات و الیاژها می‌‌باشد. خوردگی ، پدیده‌ای خودبه‌خودی است و همه مردم در زندگی روزمره خود ، از بدو پیدایش فلزات با آن روبرو هستند. در اثر پدیده خودبه‌خودی ، فلز از درجه اکسیداسیون صفر تبدیل به گونه‌ای با درجه ‌اکسیداسیون بالا می‌‌شود.

M ------> M+n + ne

در واقع واکنش اصلی در انهدام فلزات ، عبارت از اکسیداسیون فلز است.

 

تخریب فلزات با عوامل غیر خوردگی

فلزات در اثر اصطکاک ، سایش و نیروهای وارده دچار تخریب می‌‌شوند که تحت عنوان خوردگی مورد نظر ما نیست.

فرایند خودبه‌خودی و فرایند غیرخودبه‌خودی

خوردگی یک فرایند خودبخودی است، یعنی به زبان ترمودینامیکی در جهتی پیش می‌‌رود که به حالت پایدار برسد. البته M+n می‌‌تواند به حالتهای مختلف گونه‌های فلزی با اجزای مختلف ظاهر شود. اگر آهن را در اتمسفر هوا قرار دهیم، زنگ می‌‌زند که یک نوع خوردگی و پدیده‌ای خودبه‌خودی است. انواع مواد هیدروکسیدی و اکسیدی نیز می‌‌توانند محصولات جامد خوردگی باشند که همگی گونه فلزی هستند. پس در اثر خوردگی فلزات در یک محیط که پدیده‌ای خودبه‌خودی است، اشکال مختلف آن ظاهر می‌‌شود.


بندرت می‌‌توان فلز را بصورت فلزی و عنصری در محیط پیدا کرد و اغلب بصورت ترکیب در کانیهاو بصورت کلریدها و سولفیدها و غیره یافت می‌‌شوند و ما آنها را بازیابی می‌‌کنیم. به عبارت دیگر ، با استفاده ‌از روشهای مختلف ، فلزات را از آن ترکیبات خارج می‌‌کنند. یکی از این روشها ، روش احیای فلزات است. بعنوان مثال ، برای بازیابی مس از ترکیبات آن ، فلز را بصورت سولفات مس از ترکیبات آن خارج می‌‌کنیم یا اینکه آلومینیوم موجود در طبیعت را با روشهای شیمیایی تبدیل به ‌اکسید آلومینیوم می‌‌کنند و سپس با روشهای الکترولیز می‌‌توانند آن را احیا کنند.


برای تمام این روشها ، نیاز به صرف انرژی است که یک روش و فرایند غیرخودبه‌خودی است و یک فرایند غیرخودبه‌خودی هزینه و مواد ویژه‌ای نیاز دارد. از طرف دیگر ، هر فرایند غیر خودبه‌خودی درصدد است که به حالت اولیه خود بازگردد، چرا که بازگشت به حالت اولیه یک مسیر خودبه‌خودی است. پس فلزات استخراج شده میل دارند به ذات اصلی خود باز گردند

 

جنبه‌های اقتصادی فرایند خوردگی

برآوردی که در مورد ضررهای خوردگی انجام گرفته، نشان می‌‌دهد سالانه هزینه تحمیل شده از سوی خوردگی ، بالغ بر 5 میلیارد دلار است. بیشترین ضررهای خوردگی ، هزینه‌هایی است که برای جلوگیری از خوردگی تحمیل می‌‌شود.

پوششهای رنگها و جلاها

ساده‌ترین راه مبارزه با خوردگی ، اعمال یک لایه رنگ است. با استفاده ‌از رنگها بصورت آستر و رویه ، می‌‌توان ارتباط فلزات را با محیط تا اندازه‌ای قطع کرد و در نتیجه موجب محافظت تاسیسات فلزی شد. به روشهای ساده‌ای می‌‌توان رنگها را بروی فلزات ثابت کرد که می‌‌توان روش پاششی را نام برد. به کمک روشهای رنگ‌دهی ، می‌‌توان ضخامت معینی از رنگها را روی تاسیسات فلزی قرار داد.

آخرین پدیده در صنایع رنگسازی ساخت رنگهای الکتروستاتیک است که به میدان الکتریکی پاسخ می‌‌دهند و به ‌این ترتیب می‌توان از پراکندگی و تلف شدن رنگ جلوگیری کرد.

پوششهای فسفاتی و کروماتی

این پوششها که پوششهای تبدیلی نامیده می‌‌شوند، پوششهایی هستند که ‌از خود فلز ایجاد می‌‌شوند. فسفاتها و کروماتها نامحلول‌اند. با استفاده ‌از محلولهای معینی مثل اسید سولفوریک با مقدار معینی از نمکهای فسفات ، قسمت سطحی قطعات فلزی را تبدیل به فسفات یا کرومات آن فلز می‌‌کنند و در نتیجه ، به سطح قطعه فلز چسبیده و بعنوان پوششهای محافظ در محیط‌های خنثی می‌‌توانند کارایی داشته باشند.

این پوششها بیشتر به ‌این دلیل فراهم می‌‌شوند که ‌از روی آنها بتوان پوششهای رنگ را بر روی قطعات فلزی بکار برد. پس پوششهای فسفاتی ، کروماتی ، بعنوان آستر نیز در قطعات صنعتی می‌‌توانند عمل کنند؛ چرا که وجود این پوشش ، ارتباط رنگ با قطعه را محکم‌تر می‌‌سازد. رنگ کم و بیش دارای تحلخل است و اگر خوب فراهم نشود، نمی‌‌تواند از خوردگی جلوگیری کند.

پوششهای اکسید فلزات

اکسید برخی فلزات بر روی خود فلزات ، از خوردگی جلوگیری می‌‌کند. بعنوان مثال ، می‌‌توان تحت عوامل کنترل شده ، لایه‌ای از اکسید آلومینیوم بر روی آلومینیوم نشاند. اکسید آلومینیوم رنگ خوبی دارد و اکسید آن به سطح فلز می‌‌چسبد و باعث می‌‌شود که ‌اتمسفر به‌ آن اثر نکرده و مقاومت خوبی در مقابل خوردگی داشته باشد. همچنین اکسید آلومینیوم رنگ‌پذیر است و می‌‌توان با الکترولیز و غوطه‌وری ، آن را رنگ کرد. اکسید آلومینیوم دارای تخلخل و حفره‌های شش وجهی است که با الکترولیز ، رنگ در این حفره‌ها قرار می‌‌گیرد

همچنین با پدیده ‌الکترولیز ،آهن را به اکسید آهن سیاه رنگ (البته بصورت کنترل شده) تبدیل می‌‌کنند که مقاوم در برابر خوردگی است که به آن "سیاه‌کاری آهن یا فولاد" می‌‌گویند که در قطعات یدکی ماشین دیده می‌‌شود.

پوششهای گالوانیزه

گالوانیزه کردن (Galvanizing) ، پوشش دادن آهن و فولاد با روی است. گالوانیزه ، بطرق مختلف انجام می‌‌گیرد که یکی از این طرق ، آبکاری با برق است. در آبکاری با برق ، قطعه‌ای که می‌‌خواهیم گالوانیزه کنیم،کاتد الکترولیز را تشکیل می‌‌دهد و فلز روی در آند قرار می‌‌گیرد. یکی دیگر از روشهای گالوانیزه ، استفاده ‌از فلز مذاب یا روی مذاب است. روی دارای نقطه ذوب پایینی است.


در گالوانیزه با روی مذاب آن را بصورت مذاب در حمام مورد استفاده قرار می‌‌دهند و با استفاده ‌از غوطه‌ور سازی فلز در روی مذاب ، لایه‌ای از روی در سطح فلز تشکیل می‌‌شود که به ‌این پدیده ، غوطه‌وری داغ (

پوششهای قلع

قلع از فلزاتی است که ذاتا براحتی اکسید می‌‌شود و از طریق ایجاد اکسید در مقابل اتمسفر مقاوم می‌‌شود و در محیطهای بسیار خورنده مثل اسیدها و نمکها و ... بخوبی پایداری می‌‌کند. به همین دلیل در موارد حساس که خوردگی قابل کنترل نیست، از قطعات قلع یا پوششهای قلع استفاده می‌‌شود. مصرف زیاد این نوع پوششها ، در صنعت کنسروسازی می‌‌باشد که بر روی ظروف آهنی این پوششها را قرار می‌‌دهند.

پوششهای کادمیم

این پوششها بر روی فولاد از طریق آبگیری انجام می‌‌گیرد. معمولا پیچ و مهره‌های فولادی با این فلز ، روکش داده می‌‌شوند.

فولاد زنگ‌نزن

این نوع فولاد ، جزو فلزات بسیار مقاوم در برابر خوردگی است و در صنایع شیر آلات مورد استفاده قرار می‌گیرد. این نوع فولاد ، آلیاژ فولاد با کروم می‌‌باشد و گاهی نیکل نیز به ‌این آلیاژ اضافه می‌‌شود.  

 

با تشکر از جناب آقای داعی- مرجع 

Hot dip galvanizing) می‌گویند. لوله‌های گالوانیزه در ساخت قطعات مختلف ، در لوله کشی منازل و آبرسانی و ... مورد استفاده قرار می‌‌گیرند.  
در جامعه منابع فلزات محدود است و مسیر برگشت طوری نیست که دوباره آنها را بازگرداند. وقتی فلزی را در اسید حل می‌‌کنیم و یا در و پنجره دچار خوردگی می‌‌شوند، دیگر قابل بازیابی نیستند. پس خوردگی یک پدیده مضر و ضربه زننده به ‌اقتصاد است.