شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

ساخت و بازیافت کاغذ در خانه

لطفا به این آدرس مراجعه فرمایید.

مکانیسم روش غیر حرارتی COLD PRODUCTION در تولید نفت سنگین

مکانیسم روش غیر حرارتی COLD PRODUCTION  در  تولید نفت سنگین. 

  

 

لینک

اصول طیف سنجی جرمی (اسپکترومتری جرمی )

اصول طیف سنجی جرمی (اسپکترومتری جرمی )

یک ذره باردارمتحرک باسرعتی یکنواخت درخلا ء تحت تاثیر یک میدان مغناطیسی نیرویی تحمل می کند که سبب تغییر مسیرش می شود.انحراف ذره ازمسیراولیه بستگی به جرم وبارالکتریکی ذره دارد.اگر سرعت ذره باردارتحت تاثیر یک میدان الکتریکی به اختلاف پتانسیل V تشدید شده باشد انرژی جنبشی ذره دراثراین میدان عبارت است از       (1 )     mv2 /2  =V.e 

 که دراین رابطه  e و m و  به ترتیب بار وجرم وسرعت ذره می باشد.طیف نگارجرمی یون هارابرحسب مقادیر m/e  ازیکدیگر جدا می کند. در حضور یک میدان مغناطیسی ، یک ذره باردار مسیر منحنی شکلی را خواهد داشت. معادله‌ای که شعاع این مسیر منحنی شکل را نشان می‌دهد به صورت زیراست    :                                                 ( 2)       r = mv / eH

که r شعاع انحنای مسیر و H شدت میدان مغناطیسی است.   باحذف v ازبین دومعادله فوق٬ معادله اساسی اسپکترومتری های جرم ساده را بدست می دهد.          m / e = H2R2 / 2V      

این معادله نشان می دهد که شعاع مسیریون٬ می تواند در اثر تغییر  H ویا V تغییر نماید. معمولا را متغیر انتخاب می نمایند.

رفتار و عمل یک یون را در بخش تجزیه‌گر جرمی یک طیف سنج جرمی توسط این معادله می توان توجیه نمود .      

              اسپکترومتر

اصول عملیات

دراسپکترومتری جرمی موادی که توسط کروماتوگرافی گاز جداسازی شده اند  شناسایی واندازه گیری می گردند .به این  صورت که٬  گازهای خارج شده ازستون مویینه ( GC ) یکی یکی مستقیما واردمخزن یونش  دستگاه طیف سنج جرمی می شوند . درقسمت هایی از دستگاه چون مخزن یون و جمع کننده و ....بوسیله پمپ ٬ خلاء ایجاد می کنند.وقتی که دستگاه طیف سنج جرمی کار می کند ریان یکنواختی از بخار مولکول ها از روزنه مولکولی به محفظه یونش وارد می شوند و توسط جریانی از الکترون های پرانرژی بمباران شده وتبدیل به یون های مثبت می گردند.  در محفظه یونش الکترون های پرانرژی دارای انرژی معادل 70 میکرون - ولت هستند. و از یک "سیم باریک"  که تا چند هزار درجه سلسیوس گرم ‌شده است٬ ساطع می‌شوند.

 یک "صفحه دافع" که پتانسیل الکتریکی مثبت کمی دارد، یونهای مثبت  را به طرف "صفحات شتاب دهنده" هدایت می‌کند.

 مولکول های نمونه که یونیزه نشده اند.  بطور مداوم توسط مکنده‌ها یا
پمپهای خلا٬ که به محفظه یونش متصل هستند، خارج می شوند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این
یونهای منفی توسط صفحات دافع جذب می‌گردند.

 ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.

پرتوی یون های مثبت در یک میدان الکتریکی باقدرت چندین هزار ولت شتاب داده می‌شوند. درنتیجه  این عمل ، پرتویی از یونهای مثبت سریع تولید می شود. این یونها توسط یک یا چند "شکاف متمرکز کننده"  یکنواخت ومتمرکز می‌شوند.اگر ولتاژاین میدان ثابت نگهداشته شود٬ تمام یون هایی که m/e  مساوی دارند   ٬ باسرعت یکسان وارد یک میدان مغناطیسی می شوند.و بسته به نسبت بار/جرم  جدا می‌گردند.

اگر شدت میدان  ( H) رابه میزان ثابتی افزایش ویا کاهش دهند نیروی اعمال شده بوسیله میدان مغناطیسی افزایش ویاکاهش می یابد وپرتوهای جداشده هریک به نوبت ازشکاف عبورنموده وبه صفحه آشکارکننده برخوردمی کنند .

آشکار کننده بخش دیگر دستگاه است .که  در اثر برخورد یونها به آن ، هریون مثبت باگرفتن یک الکترون ٬ تولید جریان درمدار می کند . سیگنال تولید شده از آشکار کننده به یک ثبات داده می‌شود که یونهای دارای نسبت بار/جرم مشخص و معین را٬ شمارش و آشکارمی گرداند.ونموداری از طیف جرمی ، تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم را رسم می کند .  می‌توان آن قدر دقیق این جریان را تنظیم نمود. که جریان حاصل از برخورد حتی یک یون به آشکار کننده اندازه ‌گیری شود.

 در دستگاههای جدید ، خروجی آشکار کننده  به رایانه متصل است. رایانه  اطلاعات  را به هر دو صورت جدولی و گرافیکی ذخیره می کند. درپایان داده‌ها با طیف های استاندارد ذخیره شده موجود در رایانه مقایسه می‌گردد.ومولکول جداسازی شده شناسایی می شود.

اصول دوازده گانه شیمی سبز

واژه شیمی، اغلب با کلماتی نظیر محصولات، صنعت، شغل، تجارت، پیشرفت و خطرات همراهاست. صنایع شیمیایی برای افراد زیادی اشتغال ایجاد کرده اند. بنابراین در حیاتاجتماعی و اقتصادی جوامع نقش کلیدی دارند. از سوی دیگر بسیاری از فرایندهایی که ازمواد شیمیایی استفاده می کنند می توانند اثرهای زیان آوری روی محیط زیست یا سلامتیانسان داشته باشند. بنابراین حذف یا کاهش این خطرات تا یک سطح قابل قبول، مسئله ایبسیار مهم است. خطرهای مواد شیمیایی را می توان با رابطه زیر نشان داد: انتشار * زیان آوری = خطر

شیمی سبز


با توجه به رابطه بالا با کاهش انتشار مواد خطرناک می توان ازخطرهای احتمالی مواد شیمیایی کاست. این کار معمولاً با اعمال محدودیت های قانونی درمراحل استفاده، جابه جایی، تصفیه و یا دفع مواد شیمیایی انجام می شود. اما شیمی سبزبه پارامتر اول یعنی زیان آوری مواد شیمیایی می پردازد و به دنبال این است که خطرذاتی مواد را کاهش دهد. شیمی سبز بنابر پذیرفته ترین تعریف آن عبارت است از: طراحی،توسعه و به کارگیری فرایندها و محصولات برای کاهش یا حذف موادی که برای انسان یامحیط زیست خطرناک هستند. برای شیمی سبز ۱۲ اصل بیان می کنند که عبارتند از:
۱ _ بهتر است که مواد زاید در فرایندها تولید نشوند تا اینکه به فکر راهی برای از بینبردن آنها باشیم.
۲ _ روش های ساخت مواد باید به گونه ای طراحی شوند که بیشتریناستفاده از مواد واکنش دهنده انجام شود و تمامی آنان به محصول تبدیل شوند.
۳ _ تا آنجا که امکان پذیر است روش های ساخت مواد به گونه ای طراحی شود که خطری رامتوجه انسان یا محیط زیست نکند.
۴ _ محصولات جدید باید به گونه ای طراحی شوندکه بیشترین کارایی همراه با کمترین میزان سمیت را داشته باشند.
۵ _ استفاده ازمواد کمکی مانند حلال ها و... به کمترین میزان ممکن برسد و در شرایط اضطرار هم ازمواد کم خطرتر استفاده شود.
۶ _ انرژی مورد نیاز فرایندها با توجه به شرایطاقتصادی و محیطی فراهم شود و تا آنجا که ممکن است فرایندهای شیمیایی در دما و فشارمعمولی انجام شوند.
۷ _ از مواد خامی استفاده شود که قابلیت تولید مجدد درطبیعت را داشته باشند. (منابع تجدیدشونده)
۸ _ تا آنجا که امکان پذیر است مراحلفیزیکی و شیمیایی واکنش ها کوتاه شود.
۹ _ از واکنشگرهای کاتالیزوری به جایواکنشگرهای استوکیومتری استفاده شود.
۱۰ _ سعی شود محصولات فرایندهای شیمیاییبه صورت زیست تخریب پذیر باشند.
۱۱ _ روش های تجزیه ای برای کنترل لحظه به لحظهواکنش های شیمیایی طراحی و توسعه داده شوند تا بتوان در هر لحظه تولید مواد مضر راتشخیص داد. ۱۲ _ از مواد یا حالتی از مواد استفاده شود که کمترین قابلیت برایایجاد حوادثی مانند نشت، انفجار و آتش سوزی را داشته باشد. هم اینک نزدیک به پانزدهسال از تلاش های جدی شیمیدانان برای استفاده از اصول شیمی سبز می گذرد و در همینمدت کارهای ارزنده ای به انجام رسیده است. این تلاش های علمی را می توان در ۳ محورزیر خلاصه کرد.
الف _ استفاده از مواد اولیه جایگزین:
ادامه مطلب ...

آنتی بیوتیک

آنتی بیوتیکها (Antibiotic) فرآورده‌های حاصل از فعالیت میکروارگانیسمها هستند که بطور اختصاصی رشد دسته‌ای دیگر از میکروارگانیسمها را متوقف ساخته یا آنها را از بین می‌برند. آنتی بیوتیکها برای میزبان نسبتا بی‌زیان می‌باشند و می‌توانند برای درمان بیماریها بکار روند.

اطلاعات اولیه

آنتی بیوتیکها مواد شیمیایی هستند که از میکروارگانیسمهایی مانند قارچهای میکروسکوپی و باکتریها گرفته می‌شوند و از ادامه زندگی سلولهای یوکاریوتها یا پروکاریوتها جلوگیری نموده و یا مانع تکثیر آنها می‌شوند. اجزای سازنده آنتی بیوتیکها بسته به کاری که انجام می‌دهند متفاوت است. بیشتر آنتی بیوتیکها بر روی هر دو نوع سلول پروکاریوتها و یوکاریوتها اثر می‌کنند و به همین دلیل نمی‌توان همه آنها را از نظر درمانی برای انسان مورد استفاده قرار داد.

آنتی بیوتیکها روی واکنشهای بنیادی یک سلول اثر می‌کنند. بعضی از آنها خاصیت ضد سرطانی دارند زیرا اثر آنها بیشتر روی سلولهایی است که در حال تقسیم سریع هستند و به همین دلیل باکتریها و سلولهای مغز استخوان که سازنده گویچه‌های سفید خون و گویچه‌های قرمز خون می‌باشند و همچنین سلولهای سرطانی در مقابل آنتی بیوتیکها حساسیت بیشتری دارند.

تاریخچه

مدتها قبل از کشف پنی‌سیلین بشر آموخته بود بطور تجربی بعضی مواد خام را به عنوان عامل ضد میکروب مورد استفاده قرار دهد. 600 - 500 سال قبل از میلاد ، چینیها شیره کپک زده لوبیای شور را برای درمان عفونتها بکار می‌بردند. اصطلاح آنتی بیوز (Antibiosis) اولین بار در سال 1889 بوسیله ویلمین برای توجیه ماهیت رقابتی جوامع بیولوژیک که در آن فقط قویترین و اصلح‌ترین زنده می‌ماند بکار برده شد و چند سال بعد این اصطلاح برای آنتاگونیسم میکروارگانیسمها نیز مورد استفاده قرار گرفت. به دنبال کشف پنی‌سیلین بوسیله فلیمینگ در سال 1929 دوبوس در سال 1939 آنتی بیوتیک تیرو تریسین را از باکتری باسیلوس برویس بدست آورد.

آنتی بیوتیکهای مهار کننده همانند سازی DNA

آنتی بیوتیکهایی که از همانند سازی DNA جلوگیری می‌کنند عبارتند از:میتومیسین (Mytomycin) که به دو رشته DNA مکمل متصل شده و از جدا شدن آنها از یکدیگر جلوگیری می‌کند. آنتی بیوتیک دیگری به نام اکتینومایسین D درغلظتهای زیاد همانندسازی DNA را مهار می‌کند. این آنتی بیوتیک دارای دو حلقه مسطح با پیوندهای مضاعف است و می‌تواند خود را بین نوکلئوتیدها جای داده و بدین ترتیب همانند سازی را مختل کند.

آنتی بیوتیکهای مهار کننده سنتز RNA

اکتینومایسین آنتی بیوتیکی است که به DNA (به باز گوانین) متصل شده و از سنتز RNA پیک جلوگیری می‌کند. از این آنتی بیوتیک در پژوهشهای بیوشیمی برای مطالعه اثر برخی از مواد شیمیایی بر روی سنتز RNA پیک استفاده می‌شود مثلا برای تعیین طول عمر RNA پیک. اکتینومایسین یکی از داروهای ضد سرطانی خوب محسوب می‌شود. آنتی بیوتیک ریفامپسین با آنزیم RNA پلیمراز ترکیب شده و سنتز RNAها را متوقف می‌کند.

آنتی بیوتیکهای مهارکننده پروتئین سازی

موثر در پروکاریوتها

تعداد زیادی از این آنتی بیوتیکها وجود دارد که به بعضی از آنها اشاره می‌شود. یورین تری کربوکسیلیک اسید در مرحله آغازی سنتز پروتئین ، آنیزومایسین و کلرامفنیکل و تتراسایکلین در مرحله طویل شدن و تتراسایکلین و استرپتومایسین در مرحله آخر از پروتئین سازی ممانعت به عمل می‌آورند.

موثر در یوکاریوتها

پورومایسین و اسپارسومایسین و استرپتومایسین از پروتئین سازی در یوکاریوتها جلوگیری می‌کنند.

منابع و اختصاصات برخی از آنتی بیوتیکهای متداول

آنتی بیوتیکتاریخ کشفمنبعماهیت شیمیاییموارد مصرف اختصاصی
پنی‌سیلین1929پنی‌سیلیوم نوتاتومدی‌پپتیدعلیه باکتریهای گرم منفی ، گونوککها ، مننگوکوکها)) و اسپیروکت
استرپتومایسین1944استرپتومیسس تری رئوسگلوکوزید بازیعلیه سالمونلا و در درمان بیماری سل
نئومایسین1949استرپتومیسس فرادیآمینو گلوکوزیدعلیه باکتریهای گرم مثبت و منفی و بکار رفتن آن به عنوان ضدعفونی کننده موضعی و عمومی
نیستاتین1951استرپتومیسس نورسئینامشخصموثر علیه قارچ کاندیدا آلبیکنس و سایر قارچها
کانامایسین1957استرپتومیسس نیوئوسآمینو گلیکوزیدموثر بر علیه استافیلوکوکوس طلایی و اغلب باکتریهای گرم منفی بجز سودوموناس و درمان عفونت مجاری ادراری

خصوصیات آنتی‌بیوتیک موفق برای درمان بیماریها

یک آنتی بیوتیک وقتی می‌تواند برای درمان بیماریها با موفقیت بکار رود که دارای خصوصیات زیر باشد.

  • روی عامل بیماری اثر داشته باشد بدون اینکه آثار جانبی سمی قابل توجهی ایجاد نماید.
  • باید به حد کافی پایدار باشد بطوری که بتوان آنرا از محیط کشت جدا نمود و برای مدت معقولی ذخیره کرد بدون اینکه اثرش کاهش یابد.
  • سرعت دتوکسیفیکاسیون (سم زدایی) و دفع دارو از بدن به گونه‌ای باشد که غلظت کافی را برای مدت معینی در خون نگاه داشته و احتیاجی به دوزهای مکرر نباشد.
  • دفع دارو به حد کافی سریع و کامل باشد و پس از قطع مصرف دارو بطور کامل دفع گردد.

مقاومت بر علیه آنتی بیوتیکها

در هر یک میلیون تقسیم سلولی یک جهش یافته را می‌توان یافت که به یک آنتی بیوتیک مقاوم باشد. هر گاه این جهش در بیمار تحت درمان با آنتی بیوتیک رخ دهد، جهش یافته قدرت زنده ماندن بیشتر از سایر میکروارگانیسمهای میزبان را دارا بوده و در مدت کوتاهی تعداد آنها افزایش می‌یابد و از اینرو درمان با همان آنتی بیوتیک نتیجه مطلوبی بدست نمی‌دهد. و باید آنتی بیوتیک دیگری جایگزین آن شود.

چشم انداز

با تکیه بر آنتی بیوتیکها جهت کنترل عفونتهای میکروبی بدون شک پزشکان به تکنیک سترونی توجه زیادی معطوف نداشته و بدون تشخیص دقیق مکان به درمان عفونتهای میکروبی پرداختند. این روش غالبا قبل از پیدایش میکروارگانیسمهای مقاوم به آنتی بیوتیکهای بدون نسخه در دسترس عموم قرار گرفت و مصرف بیش از حد آنها در درمان بیماریها موجب پیدایش حساسیت و آلرژی در بسیاری از افراد گردید.

سینتیک داروها

سینتیک داروها ، مکانیسمهای عمل داروها و چگونگی ارتباط این مکانیسمها با منطق درمانی و جذب و دفع داروها را بیان می‌کند.



<><>تصویر

اطلاعات اولیه

برخی از عوامل شیمی دارویی می‌توانند دارای یک یا هر دو اثر باشند:

  1. اثر متوقف کننده.یعنی این ترکیبات مانع رشد یا تکثیر بیشتر موجود ذره بینی یا یاخته مهاجم می‌شوند.
  2. اثر کشنده. یعنی عامل مهاجم را کشته یا از بین می‌برد. اثر متوقف کننده یا کشندگی به عوامل متعددی از جمله غلظت دارو ، PH ، درجه حرارت ، مدت اثر و مرحله متابولیکی عامل مهاجم و حضور مواد تداخل‌کننده بستگی دارد.

سیر تحولی

عبارت شیمی درمانی در سال 1913 توسط "پل ارلیش" پدر شیمی درمانی نوین بکار برده شد. این جمله مشهور اوست که:

"داروها اثر نخواهند گذاشت، مگر این که اتصال یافته باشند."

در سال 1975 "فرد اچ. هامن" این جمله را تغییر داده و به صورت جمله مثبت بیان کرد:
"داروها اثر می‌کنند، زیرا اتصال می‌یابند."


 

سینتیک داروها در ارتباط با بیماری

درمان دارویی آنژین صدری قفسه سینه

نیتراتها و بلوک کننده های کانال کلسیم.

  • نیتراتها:

    • مکانیسم:موجب شل شدن عضلات صاف احتمالا در اثر آزاد شدن گروه اکسید نیتریک (NO) می‌شود.
    • جذب:دارو ممکن است سریع و کوتاه العمل (زیر زبانی) در عرض 30-15 دقیقه ، متوسط (خوراکی یا دهانی) در عرض 4-2 ساعت ، یا طویل العمل (ترانس درمال یا جلدی) در عرض 8-4 ساعت باشد.
    • دفع:داروهای فعال و سه گروه بسرعت در کبد و جای دیگر متابولیزه شده و نیمه عمر آنها ، 8-2 دقیقه است.
  • بلوک کننده های کانال کلسیمی:

    • مکانیسم:بطور مستقیم موجب اشباع محیطی عروق و کاهش میزان ورودی کلسیم فعال‌کننده به داخل عضله صاف و سلولهای قلبی می‌شود. این داروها از روده جذب می‌شوند و توسط کلیه دفع می‌شوند.

آنتی بیوتیکها

  • مکانیسم:در اصل با مهار مرحله‌ای از سنتز دیواره سلولی باکتری (و نه غشا سلولی) عمل کرده که منجر به انهدام خود به خود با کتری می‌گردند.
  • جذب:تعدادی از آنتی بیوتیکها توسط اسید معده تجزیه می‌گردند و آنتی بیوتیکهای مقاوم به اسید در روده بوسیله غذاها جذب می‌شوند.
  • دفع:در صفرا و ادرار ترشح می‌شوند.

سرطان

  • مکانیسم:اغلب ، عوامل ضد سرطان از راه تداخل با متابولیسم اسید نوکلئیک DNA با سنتز زیستی تداخل می‌یابند. اثر آنها در یک یا چند مرحله از چرخه سلولی بروز می‌نماید.


<><>تصویر

سینتیک داروها

جذب و دفع و مدت اثر داروهای متنوع ، مختلف است و بیشتر از طریق ادرار دفع می‌شوند.

داروهای خواب آور و کاهنده اضطراب

  • مکانیسم:داروهای مورد استفاده ، در محل کانالهای کلرید در غشا نرونی متصل می‌شوند که موجب افزایش جریان کلرید و هیپرپلاریزه شدن نرون می‌گردد.
  • جذب:جذب دارو از طریق عضلانی نامنظم بوده و مشخص نیست و سرعت جذب ، عامل تعیین کننده شروع عمل داروهاست.
  • دفع:از طریق متابولیسم کبدی ، دفع صورت گرفته و نیمه عمر داروها در بیماران کبدی طولانی می‌شود.

داروهای بیماریهای گوارشی

  • مکانیسم:آنتی اسیدها ، PH معده و قسمت فوقانی دوازدهه را افزایش می‌دهند.
  • جذب:جذب این داروها از دستگاه گوارشی ، %60-50 می‌باشد.
  • دفع:از طریق کلیه صورت می‌گیرد.


<><>تصویر

داروهای بیماریهای پوستی

  • مکانیسم:ترکیبات مورد استفاده ، مقدار آب لایه شاخی را از طریق تشکیل لایه‌ای انسدادی که از دفع آب جلوگیری به عمل می‌آورد، افزایش می‌دهد و باعث نرم شدن پوست شده و پوسته‌ریزی و ترک ترک شدن را کاهش می‌دهد.

مواد شیمیایی سمی چه هستند؟

مواد شیمیایی سمی چه هستند؟ 

 

لینک

تعاریف اولیه ‌از شیمی ‌دارویی

شیمی ‌دارویی ، گستره‌ای از علوم دارویی است که‌ اصول شیمی ‌و محیط زیست شناسی را برای ایجاد واکنشی که می‌تواند منجر به مواد دارویی جدید شود، بکار می‌برد.

تعاریف اولیه ‌از شیمی ‌دارویی

شیمی ‌دارویی ، جنبه‌ای از علم شیمی ‌است که درباره کشف ، تکوین ، شناسایی و تغییر روش اثر ترکیبات فعال زیستی در سطح مولکولی بحث می‌کند و تاثیر اصلی آن بر داروهاست، اما توجه یک شیمی‌دان دارویی تنها منحصر به دارو نبوده و بطور عموم ، دیگر ترکیباتی که فعالیت زیستی دارند، باید مورد توجه باشند. شیمی ‌دارویی ، علاوه بر این ، شامل جداسازی و تشخیص و سنتز ترکیباتی است که می‌توانند در علوم پزشکی برای پیشگیری و بهبود و درمان بیماریها بکار روند.

سیر تاریخی شیمی ‌دارویی

آغاز درمان بیماریها با دارو ،‌ در قدمت خود محو شده ‌است. اولین داروها منشاء طبیعی داشته و عمدتا از گیاهان استخراج می‌شدند و برای درمان بیماریهای عفونی بکار رفته‌اند. قرنها پیش از این ، چینی‌ها ، هندی‌ها و اقوام نواحی مدیترانه ، با مصارف درمانی برخی گیاهان و مواد معدنی آشنا بوده‌اند. به عنوان مثال ، برای درمان مالاریا از گیاه چه‌انگشان(Changshan) در چین استفاده می‌شد. اکنون ثابت شده ‌است که ‌این گیاه ، حاوی آلکالوئیدهایی نظیر فبریفوگین است.

سرخپوستان برزیل ، اسهال و اسهال خونی را با ریشه‌های اپیکا که حاوی آستن است، درمان می‌کردند. اینکاها از پوست درخت سین کونا ، برای درمان تب مالاریا استفاده می‌کردند. در سال 1823 ، کینین از این گیاه ‌استخراج شد. بقراط در اواخر قرن پنجم قبل از میلاد استفاده ‌از نمکهای فلزی را توصیه کرد و درمانهای طبی غرب را نزدیک به 2000 سال تحت نفوذ خود قرار داد.

تاریخ معرفی شیمی ‌دارویی به عنوان علم

اولین فارماکوپه در قرن 16 و قرنهای بعد منتشر شد. گنجینه عوامل دارویی سرشار از داروهای جدید با منشاء گیاهی و معدنی معرفی شدند. در اواخر قرن 19 ، شیمی ‌دارویی با کشف "پل ارلیش" که ‌او را پدر شیمی ‌درمانی جدید می‌نامند، در ارتباط با اینکه ترکیبات شیمیایی در برابر عوامل عفونی ویژه‌ای از خود سمیت انتخابی نشان می‌دهند، دچار یک تحول شگرف شد.

در همین دوران ، "امیل فیشر" ، نظریه قفل و کلید را که یک تغییر منطقی برای مکانیسم عمل داروها بود، ارائه داد. تحقیقات بعدی ارلیش و همکارانش ، منجر به کشف تعداد زیادی از عوامل شیمی ‌درمانی جدید شد که ‌از آن میان ، آنتی بیوتیک‌ها و سولفامیدها ، از همه برجسته‌تر بودند.


<><>تصویر

جنبه‌های بنیادی داروها

سازمان بهداشت جهانی ، دارو را به عنوان « هر ماده‌ای که در فرایندهای دارویی بکار رفته و سبب کشف یا اصلاح فرایندهای فیزیولوژیک یا حالات بیماری در جهت بهبود مصرف کننده شود. » تعریف نموده ‌است و فراورده‌های دارویی را تحت عنوان « یک شکل دارویی که حاوی یک یا چند دارو همراه با مواد دیگری که در فرایند تولید به آن اضافه می‌شود. » معرفی می‌کند.

شکل داروها

بسیاری از داروها ، حاوی اسیدها و بازهای آلی می‌باشند. دلایل متعددی مبنی بر اینکه ‌این ترکیبات در داروسازی و پزشکی باید به فرم نمک مصرف شوند، عبارتند از :

  • اصلاح خصوصیات فیزیکوشیمیایی ، مانند حلالیت ، پایداری و حساسیت به نور و اثر بر اعضاء مختلف
  • بهبود نواحی زیستی از طریق اصلاح جذب ، افزایش قدرت و گسترش اثر
  • کاهش سمیت

کاربرد داروها

داروها بر اساس مقاصد خاصی بکار می‌رود که عبارتند از :

  1. تامین مواد مورد نیاز بدن ، مثل ویتامینها
  2. پیشگیری از عفونتها ، مثل سرمهای درمانی و واکسنها
  3. سمیت‌زدایی ، مانند پادزهرها
  4. مهار موقتی یک عملکرد طبیعی ، مانند بیهوش کننده‌ها
  5. تصحیح اعمالی که دچار اختلال شده‌اند و ... .


<><>تصویر

فعالیت زیستی داروها

عملکرد داروها در سه مرحله مشاهده می‌شود :

  • تجویز دارو (فروپاشی شکل دارویی مصرف شده)
  • سینتیک دارو (جذب ، توزیع ، متابولیسم و دفع دارو)
  • نحوه ‌اثر دارو (پدیده‌های شیمیایی و بیو شیمیایی که باعث ایجاد تغییرات زیستی مورد نظر می‌شوند.)

دارو نماها

داروهایی هستند که ‌اثرات ویژه‌ای بر ارگانیسم دارند، اما درمان کننده بیماری خاصی نیستند. نمونه‌هایی از این داروها عبارتند از : مورفین (مسکن) ، کوکائین (بیهوش کننده) ، آتروپین (ضد تشنج) و ... . استفاده ‌از این داروها ممکن است به بهبودی یک بیماری عفونی میکروبی یا ویروسی کمک کند. اما دارو مستقیما روی ارگانیزم بیماری‌زا عمل نمی‌کند، در صورتی که در درمان شیمیایی عامل بیماری‌زا هدف اصلی است.

طبقه‌بندی داروها

داروها را بر اساس معیارهای گوناگون طبقه‌بندی می‌کنند که عبارتند از :

  1. ساختمان شیمیایی
  2. اثر فارماکولوژی
  3. مصارف درمانی
  4. ساختمان شیمیایی درمانی ، تشریحی
  5. مکانیسم عمل در سطح سلول


<><>تصویر

نامگذاری داروها

هر دارو دارای سه یا چند نام می‌باشد که عبارتند از:

  1. شماره رمز یا رمز انتخابی
  2. نام شیمیایی
  3. نام اختصاصی غیر علمی ‌(تجاری)
  4. نام غیر اختصاصی ژنریک
  5. نامهای مترادف

نام شیمیایی دارو ، نامی ‌است که بدون ابهام ، ساختمان شیمیایی دارو را توصیف و آن را دقیق و کامل معرفی کند و بر اساس قوانین نامگذاری ترکیبات شیمیایی نامگذاری می‌شود.

مرحله اول تقطیر نفت خام در پالایشگاه

مرحله اول تقطیر نفت خام در پالایشگاه 

 

لینک

شیمی سبز چیست؟

اصطلاح شیمی سبز در رابطه با طراحی محصولات و فرآیندهای شیمیایی است که در تولید و استفاده از مواد خطرناک را کاهش داده یا کاملاً از بین می­برد. این روش در ایالت متحده با تصویب قانون جلوگیری از آلودگی را کاهش داده یا کاملاً از بین می­برد. این روش در ایالت متحده با تصویب قانون جلوگیری از آلودگی درسال 1990 آغاز شد. این قانون پایه­گذار سیاست­های دولتی ایالات متحده برای کاهش یا جلوگیری از آلودگی در منشاء آن، هر کجا که امکان­پذر باشد بود.
این قانون همچنین راهی برای اجرای اقدامـاتی فراتـر از آنـچه توسط برنامه­های سازمان محافظت از محیط زیسـت EPA ایالـت متحده انجام می­شود و برنامه­ریزی استراتژی­های خلاقانه برای محافظت از سلامتی انسان­ها و محیط زیست فراهم کرد. طبق این قانون، کاهش آلودگی در منشاء «اساساً متفاوت و مطلوب­تر از مدیریت زباله و کنترل آلودگی است».


پس از تصویب این قانون، اداره­ی جلوگیری از آلودگی و مواد سمی آژانس محافظت از محیط زیست OPPT ایده ایجاد یا بهبود محصولات و فرآیندهای شیمیایی جهت کاهش خطرات آن­ها در دست بررسی قرار داد. در سال 1991، OPPT یک برنامه آزمایشی را آغاز کرد. طبق این برنامه، برای اولین بار، کمک مالی به پروژه­های تحقیقاتی مربوط به جلوگیری از آلودگی در تولید مصنوعات شیمیایی عرضه شد. از آن زمان تا کنون، برنامه­ی شیمی سبز سازمان محافظت از محیط زیست با دانشگاه­ها، صنایع، دیگر آژانس­های دولتی و سازمان­های غیردولتی همکاری نزدیکی برای جلوگیری از آلودگی از طریق اجرای شیمی سبز ایجاد کرده است.


طرز کار شیمی سبز
ادامه مطلب ...

ساعت یدی

ساعت یدی  نام آزمایشی است با مولکول ید ( I2 ) وسدیم تیوسولفات (     NaS2O3 )  . سرعت این واکنش مانند اکثر واکنش ها به غلظت ودما  بستگی دارد . با تغییر وازدیاد  غلظت هریک از واکنشگرها سرعت افزایش می یابد .

آزمایش کلی به این ترتیب است که ابتدا  با افزایش آب اکسیژنه به مخلوط سولفوریک اسید و (پتاسیم یدید)KI  می توان ید تهیه نمود .

                          2KI + H2SO4 + H2O2  ------------- K2SO4 + I2 + 2H2O

ید  رنگ نشاسته موجود در مخلوط آزمایش را آبی می کند . حال اگر به این مخلوط تیوسولفات اضافه شود . ید وارد واکنش می شود . رنگ آبی کم کم ازبین می رود .

                                     I2 + 2 Na2S2O3------------- 2NaI + Na2S4O6 

چنانچه ید اضافی باقی بماند سبب  آبی رنگ شدن نشاسته می شود.

نحوه آزمایش به این شکل است که ابتدا محلولی از مخلوط پتاسیم یدید وسدیم تیوسولفات با غلظت مشخص و معین تهیه می کنند ( محلول الف ) سپس  درچند لوله آزمایش به تساوی حجم ثابتی از این محلول  ریخته وبه آن ها   حجم  مناسبی  سولفوریک اسید رقیق وچند قطره چسب نشاسته می افزایند  (لوله های A) .

به همان تعداد درچند لوله آزمایش دیگر محلول پر اکسید هیدروژن که با غلظت معین رقیق نموده اند . با حجم های مثلا  5 ٬10 ٬ 15 .....آماده می  کنند. ( لوله های B ).

 در مرحله آخر همزمان هریک از محلول های لوله های ( A) را به محتویات لوله های( B ) می  افزایند وزمان  انجام  واکنش را درهر لوله آزمایش  اندازه گیری  می کنند. چون حجم محلول  در لوله های B به یک اندازه افزایش یافته فاصله زمان انجام واکنش درآن ها برابر خواهد بود .

کاتالیزورهای زیست محیطی نویدبخش کاستن از آلاینده ها

"تترا آمیدو ماکروسایکلیک لیگند ها (TAMLs)" کتالیزورهایی سازگار با محیط زیست هستند که کاربردها فراوانی در کاهش و یا زدودن آلاینده ها دارند. دانشمندان این کاتالیزورها را نخستین نمونه "شیمی سبز" می دانند.

تری کالینز، مخترع این کاتالیزور از دانشگاه کارنگی ملون امریکا معتقد است که این کاتالیزورها این توانمندی را دارند که کاربردهای گسترده تر و موثرتری از آنچه قبلا به اثبات رسیده است، داشته باشند.
این کاتالیزورها اکسیداسیون، نخستین مشابه های بسیار موثر آنزیم های پروکسی دیاز هستند که اگر با پروکسید هیدروژن همراه شوند، می توانند الاینده های زیانبار را به موادی با سمیت کمتر تبدیل کنند.
Fe-TAMLs که از عناصر معمولی بیوشیمی ، کربن، هیدروژن، نیتروژن و اکسیژن قرار گرفته در پیرامون کانونی از جنس آهن راکتیو تشکیل می شوند درجه سمیت بسیار کمتری دارند و با غلظت های بسیار بسیار کم قابل استفاده هستند. از این گذشته ترکیب آنها، پیوندهای فوق العاده محکمی ایجاد می کند که عناصر واسطه ای که در اثنای واکنش با پروکسید هیدروژن به وجود می آیند و فوق العاده واکنش پذیر هستندنیز نمی توانند آنها را متلاشی کنند.
کالینز استاد شیمی و مدیر مرکز علوم سبز در دانشگاه کارنگی ملون است. او می گوید با شناخت دقیق مکانیک واکنش ها، می توان این کاتالیزورها را به نحوی تنظیم کرد که قدرت تاثیر آنها بازهم بیشتر شود.
تحقیقات گروه "کالینز" نشان داده است که Fe- TAMLsتوانمندی فوق العاده ای برای تهیه جایگزین هایی پاک و بی خطر برای رویه های صنعتی موجود هستند و می توانند راه هایی را برای رفع دیگر مشکلات حاد زیست محیطی که در حال حاضر راه حلی ندارند، ارایه دهند.
اثر این کاتالیزور ها در متلاشی کردن ترکیبات استروژنی، پاک کردن پساب های کارخانجات نساجی، کاهش آلاینده های سوختی، تصفیه پالپ (خمیر کاغذ) و فراورده های جانبی فرآیند تولید کاغذ و زدون نوعی آلودگی ناشی از میکروب سیاه زخم ثابت شده است.
علاقمندان برای مطالعه بیشتر در این زمینه می توانند به نشانی زیر مراجعه کنند.
http://www.chem.cmu.edu/groups/Collins/index.html.
مرجع: مجله شیمیدان

نکات ایمنی در خصوص گاز H2S

نکات ایمنی در خصوص گاز H2S

H2S چیست؟

•       یک گاز بسیار سمی است که می تواند در یک لحظه راههای تنفسی را فلج کند و موجب مرگ گردد ودربعضی فرایندهای صنعتی و زیست محیطی مانند بهره برداری نفت ، حفاری ، پالایشگاه ، شیلات ، کشاورزی و فاضلاب وجود دارد.همراه با نفت با شعله آبی می سوزد و ایجاد سولفور نیدریت (SO2 ) می کند . SO2 از هوا سنگین تر است در نتیجه همیشه در پایین جمع می شود. در روزهای مرطوب و مه آلود میزان آن بیشتر خواهد بود.گاز هیدروژن سولفوره در نزدیکی سطح زمین و در گودیها و همچنین مکانهایی که با موانع محصور هستند به علت سنگینی و غلظت زیاد خطرات بیشتری دارد. گازی است که در گل حفاری به سادگی حل می شود و به تمام وسایل فلزی که با گل حفاری در تماس هستند لطمه می زند .چون از هوا سنگین تر است معمولاَ در محیط های بسته و در پایین جمع می شود (نزدیک پایه های دکل نفت در دریا – در حوالی Pits, Shall Shaker و پمپ ها و محوطه درینها ، در محوطه Caller Deck).

•          اثرH2S  بر بدن انسان

        زمانی که استنشاق میشود ، از طریق ریه ها بطور مستقیم وارد جریان خون می شود . اگر مقدار کم باشد H2S بلافاصله با اکسیزن خون خنثی می شود ولی وقتی مقدار H2S در خون بالا است قسمت بازمانده آن خون را مسموم می کند. با رسیدن خون مسموم به مغز تمام مراکز مغزی که فعالیت های تنفسی را کنترل می کنند فلج می شوند. ششها از کار می ایستند و موجب خفگی می گرد میزان تاثیرات H2S روی بدن به موارد زیر بستگی دارد:

•          زمان = مدت تنفس H2S

•          تکرار = مراتبی که شخص در معرضH2S  قرار گرفته در یک مدت کوتاه

•          مقدار H2S = غلظت  H2S موجود در هوای تنفس شده

•          مقاومت بدنی = قوی بودن یا ضعیف بودن فرد

•          مشکلات تنفسی و آسم

•          دلایل دیگر = وجود الکل در خون – مشکلات روانی و غیره

علائم مسمومیت:

  1. خارش چشم و سوزش و تورم زیاد چشم
  2. سردرد و سرگیجه
  3. حالت تهوع
  4. تند شدن دستگاه تنفسی
  5. تغییر رنگ پوست
  6. تحریکات عصبی
  7. احساس درد در بینی ، گلو و سینه و سرفه
  8. سست شدن بدن و بی هوشی
  9. التهاب

کمک های اولیه :

در صورت مصدومیت با H2S به صورت زیر اقدام کنید:

امدادرسان بایستی خود از تجهیزات حفاظتی استفاده کند تا مسموم نشود.

 

  1. مصدوم را فوری از محیط آلوده دور کنید و به محیط مطمئن با اکسیزن کافی منتقل نمایید.
  2. وخامت حال مصدوم را فوری بررسی کنید.
  3. مصدوم را گرم نگه دارید
  4. کمک های اولیه پزشکی را شروع کنید
  5. پزشک مسوول را از مصدوم مطلع کنید

 

نکات ایمنی مهم در برخورد با H2S

•          هرگز خونسردی خود را از دست ندهید

•          جهت باد را همیشه مورد نظر بگیرید

•          هرگز زیر بادی که از محیط آلوده می آید توقف نکنید (فوری به منطقه مخالف بروید)

•          با احتیاط زیاد وارد محوطه کار و محیط های آلوده شوید

•          همواره فعالیت و موقعیت و محل کارکنان را زیر نظر داشته باشید

•          راههای خروجی اضطراری را بشناسید و از مسدود نبودن آنها اطمینان حاصل کنید

•          شعله آتش در محوطه نباید وجود داشته باشد

•          هوای محوطه های الوده را مرتب عوض کنید

•          تعداد کارکنان جایی که خطر H2Sوجود دارد باید حداقل باشد

•          یک تیم نجات باید همیشه در محل آماده باشد

•          از وسایل تجهیزات فردی استفاده کنید

•          هرگز برای کمک به فردی که در خطر است بدون وسایل و تجهیزات حفاظتی (ماسک هوا و غیره ) اقدام نکنید  

مرجع

هیدروژن و فواید آن

هیدروژن و فواید آن

هیدروژن ساده ترین عنصر شناخته شده برای انسان است؛ هر اتم هیدروژن تنها یک پروتون و یک نوترون دارد. هیدروژن فراوانترین گاز هستی است. ستاره ها در ابتدا از هیدروژن ساخته شده بودند. انرژی خورشید از هیدروژن به دست می آید. هیدروژن توپ عظیمی از گازهای هیدروژن و هلیوم است. درون خورشید، اتمهای هیدروژن ترکیب می شود و اتمهای هلیوم را پدید می آورد. این پدیده گدازه « Pusiun » انرژی پرتوهای خورشید را تولید می کند.
انرژی پرتوی خورشید باعث برقراری حیات روی زمین است. این انرژی به ما نور می دهد، باعث رشد گیاهان می شود، بادها را به جریان می اندازد، باعث بارش باران می شود. این انرژی در سوختهای فسیلی ذخیره شده است. بیشتر انرژی مصرفی ما در حال حاضر از خورشید منشأ می گیرد.


هیدروزن گازی (H2) روی زمین وجود ندارد. این عنصر همیشه به صورت ترکیبی است. به طور مثال، ترکیب با اکسیژن (H2O - آب) ترکیب هیدروژن با کربن ترکیبات شیمیایی متفاوتی مانند متان (CH4) و زغال و نفت را به دست می دهد . همچنین، هیدروژن در تراکم زیست و مواد عالی یافت می شود. هیدروژن از نظر امروزی بیشترین محتوای انرژی هر سوخت را دارد؛ اما از نظر حجمی، کمترین فشار عادی به صورت گاز وجود دارد. هیدروژن می تواند انرژی را ذخیره کند. بیشتر انرژی که ما امروزه مصرف می کنیم از سوختهای فسیلی به دست می آید. تنها 6% منابع انرژی از منابع تجدیدپذیرند؛ زیرا این انرژیها تمیزتر و مناسب استفاده تر در طول یک زمان کوتاه اند.
منابع انرژی تجدیدپذیر مانند خورشید و باد نمی توانند همه وقت انرژی تولید کند. خورشید همیشه نمی تابد و باد همیشه نمی وزد. منابع تجدیدپذیر در زمان و مکانی که ما نیاز داریم انرژی تولید نمی کند. ما نمی توانیم منابع انرژی زیادی برای تولید هیدروژن استفاده کنیم؛ هیدروژن می تواند انرژی را در زمان و مکانی که ما نیاز داریم تأمین کنید.


هیدروژن انتقال دهنده انرژی:
هر روز ما انرژی برقی بیشتری مصرف می کنیم. برق منبع ثانویه انرژی است؛ منابع ثانویه انرژی که گاهی به آنها ناقلهای انرژی هم گفته می شود انرژی را به مصرف کننده می رساند. از آنجا که استفاده و انتقال برق برای ما آسانتر است، ما انرژیها را به انرژی برق تبدیل می کنیم. برق به ما نور، گرما، آب داغ، غذای سرد، تلویزیون، رایانه می دهد. زندگی بسیار سخت می شد، اگر ما مجبور بودیم زغال بسوزانیم، اتم بشکافیم، یا سدهای خود رابسازیم؛ پس انرژی زندگی را ساده تر کرده است.


هیدروژن ناقل انرژی برای آینده است. این عنصر سوخت تمیزی است که می توان آن را در جاهایی جایگزین کرد که ما بسختی از برق استفاده می کنیم. فرستادن برق در مسیرهایی طولانی 4 برابر بیشتر از حمل دریایی هیدروژن به صورت خطوط لوله ای هزینه دارد.


هیدروژن چطور ساخته می شود؟
از آنجا که هیدروژن گازی در زمین وجود ندارد، ما باید آن را بسازیم. با جدا کردن هیدروژن از آب، تراکم زیست یا گاز طبیعی از منابع محلی هیدروژن می سازیم. دانشمندان حتی کشف کرده اند که بعضی جلبکها و باکتریها هیدروژن تولید می کنند. تولید هیدروژن در حال حاضر بسیار گران است؛ اما فنون جدیدی برای این کار در حال توسعه است. هیدروژن را می توان برای خدمات رفاهی مرکزی بزرگ یا دستگاههای کوچک با کاربرد محلی تولید کرد. از این رو، انعطاف پذیری هیدروژن یکی از امتیازات عمده آن است .


کاربردهای هیدروژن:
هیدروژن در صنعت به مصرف پالایش و پرداخت فلزات و فراوری غذاها می رسد.NASA اولین کاربر هیدروژن به عنوان ناقل انرژی است که هیدروژن را برای سالها در برنامه فضایی مورد استفاده قرار داد. تنها محصول فرعی در چنین فرایندهایی آب است که خدمه موشک از آن برای نوشیدن استفاده می کند. سلولهای سوختی هیدروژن یا باتریهای هیدروژنی برق تولید می کند. آنها کارایی بسیاری دارند، اما ساخت آنها گران است. سلولهای سوختی کوچک می توانند برق مناطق دوردست را تأمین کند.


هیدروژن به عنوان سوخت:
دستگاههای نیروی هیدروژنی برای مدتی ساخته نخواهند شد؛ زیرا هزینه زیادی به همراه دارد. هیدروژن ممکن است بزودی به گاز طبیعی اضافه شود تا از آلودگی دستگاههای موجود بکاهد. هیدروژن بزودی به گازوئیل اضافه خواهد شد تا آلودگی را کاهش دهد و کارایی را زیاد کند. اضافه کردن تنها 5% هیدروژن به گازوئیل ممکن است به میزان درخور توجهی اکسید نیتروژن را (که در آلودگی لایه اوزن بسیار مؤثر است) کاهش دهد.
موتوری که هیدروژن خالص می سوزاند تقریباً هیچ آلودگی ندارد. شاید حدود 10 تا 20 سال به استفاده از خودرو شخصی مصرف کننده هیدروژن باقی مانده است.

 

آینده هیدروژن:
قبل از اینکه هیدروژن به عنوان سوختی مهم شناخته شود، باید سامانه های جدید زیادی ساخت. ما به سامانه هایی نیاز خواهیم داشت که هیدروژن بسازند ذخیره کنند و انتقال دهند. ما به خطوط لوله و سلول سوختی اقتصادی نیاز خواهیم داشت و مصرف کنندگان به فناوری و آموزش استفاده از آن نیاز خواهند داشت.

وجود H2S در نفت و راههای زدودن آن

وجود H2S در نفت و راههای زدودن آن. 

 

لینک

پدیده ی فوتوالکتریک

پدیده ی فوتوالکتریک

در سال ١٢٦٨ هجری خورشیدی (١٨٨٧ م) هانریش هرتز دانشمند آلمانی در حین انجام آزمایش متوجّه شد که تاباندن نور با طول موج‌های کوتاه مانند امواج فرابنفش به کلاهک فلزی الکتروسکوپ با بار منفی باعث تخلیه الکتروسکوپ می‌شود وی با انجام آزمایش‌های بعدی نشان داد که تخلیه الکتروسکوپ بخاطر جدا شدن الکترون از سطح کلاهک فلزی آن است.
برای بررسی بیشتر پدیده فوتوالکتریک می‌توان دستگاهی مطابق شکل زیر تهیه کرد و دست به آزمایش زد. این دستگاه شامل دو الکترود و است که داخل یک محفظه خلاء قرار دارند. این دو الکترود به یک منبع ولتاژ قابل تنظیم در خارج محفظه وصل شده اند.

اگر بین این دو الکترود، اختلاف پتانسیل برقرار شود، هیچ جریانی در مدار برقرار نمی‌شود؛ حتی اگر ولتاژ خیلی بالا باشد؛ ولی اگر نور تکفام با بسامد مناسب بر الکترود بتابانیم، جریان در مدار برقرار می‌شود و افزایش ولتاژ باعث افزایش شدت جریان در مدار خواهد شد. این موضوع نشان می‌دهد که نور تابیده شده روی الکترود باعث کنده شدن الکترون از آن شده است و ولتاژ ما بین دو الکترود نیز (با ایجاد میدان الکتریکی)، الکترون‌های آزاد شده را از کنار الکترود به الکترود می‌رساند و اینچنین جریان درمدار برقرار می‌شود.

شکل اوربیتال ها

نام اوربیتال

شکل اوربیتال

نام اوربیتال

شکل اوربیتال

1s

 

3py

2s

3pz

 

3s

 

3dxy

 

2px

3dxz

 

2py

 

 

3dyz

 

2pz

 

3dz2

3px

 

3dx2-y2

 

منبع: وبلاگ کیمیا گر

پلیمر اسفنجی

نگاه کلی

اسفنجها مواد متخلخلی هستند که حبابهای گاز در حفره‌های آنها حبس شده است. اسفنجها انواع گوناگونی دارند و با توجه به نرمی یا سختی کاربرهای مختلفی دارند. از اسفنجهای نرم در تهیه بالش و تشک و … استفاده می‌شود و اسفنجهای سخت و با چگالی گوناگون مصارف گوناگونی در تهیه وسایل خانگی و صنعتی دارند. امروزه ، گونه‌های زیادی از اسفنجها شناخته شده و تولید و مصرف می‌شوند. پلی‌اورتانها و پلی‌استایرن از عمده‌ترین و پُرمصرف‌ترین اسفنجها می‌باشند.

انواع اسفنج

اسفنجها با توجه به ساختار سلولی به دو گونه نرم و سخت تقسیم می‌شوند. اسفنجهای سخت ، سیستمهای بسته سلولی و متخلخل هستند و اسفنجهای نرم سیستمهای باز می‌‌باشند. برای اینکه اسفنجی انعطاف‌پذیر باشد، باید دارای سلولهای باز باشد تا هنگام فشردگی هوای داخل آنها خارج شود.

تشکیل اسفنج

رزینهای پلاستیکی را می‌توان با روشهای زیر بصورت اسفنج در آورد:

  • فرآورده‌های جنبی گازی‌ که طی واکنش پلیمریزاسیون تشکیل می‌شوند.
  • تبخیر یک مایع که دارای نقطه جوش پایین باشد.
  • واکنش شیمیایی یک عامل پُف‌کننده ثانوی که بوسیله حرارت فعال می‌شود.


<><>تصویر

رسانایی گرمایی اسفنجها

رسانایی گرمایی در اسفنجهای با چگالی کم ، اندکی بیشتر از رسانایی گاز حبس شده در سلولهای آنهاست. هرچه وزن مولکولی گاز بیشتر باشد، رسانایی گرمایی کمتر می‌گردد. گازهایی که رسانایی گرمایی کمتری دارند، در تهیه اسفنجهای نارسانا بکار می‌روند. ممکن است در اثر مرور زمان ، گاز اسفنج از آن خارج شده و گازهای دیگر مثل هوا یا بخار آب در آن وارد شود.

فرئونها ( گازهای فلوئوروکربن ) معمولا در سلولهای پلی اورتان ماندگارترند، اما هوا و آب هم ممکن است وارد سلولها شوند و رسانایی گرمایی اسفنج را حدود 20 تا 40 درصد افزایش دهند.

<><>
جدول : برخی گازهای مورد استفاده در تهیه اسفنجها
گازفرمول شیمیاییجرم مولکولینقطه جوشرسانایی گرمایی
هیدروژن H22- 253 4.28
نیتروژنN2 28-1960.62
اکسیژنO232-1830.62
بخار آبH2O181000.43
دی‌اکسید کربنCO244-780.40
پنتانC5H1272360.34
فلوئوروکربن12CCl2F2121-300.23
فلوئوروکربن11CCl3F127240.18

نمونه اسفنجهای کاربردی

<><>
جدول نمونه‌ای از اسفنجهایی که امروزه به صورت گسترده مورد استفاده قرار می‌گیرند
اسفنجنوعسلولگستره چگالیKg/M3حداکثر دمای کار بر درجه سانتی‌گراد
گرما سختها
پلی اورتانسختبسته24 – 640 +93 – 121
پلی اورتانانعطاف پذیرباز14.5 – 320 66 – 93
پلی ایزو سیانوراتسختبسته24 – 320 + 149+
فنولیسختباز یا بسته5.1 – 352 149+
اوره فرمالدئیدنیمه سختکمی بسته 13 – 1949
پلی آمید سختباز یا بسته32 – 640260
گرمانرم
پلی استیرنسختبسته16 – 16079
پلی اتیلننیمه سختبسته21 – 80082
پلی وینیل کلریدسختبسته32 – 6493
پلی وینیل کلریدانعطاف پذیرباز یا بسته46 – 96062 – 107
نایلونسختبسته640 – 960149

  • اسفنجهای گرماسخت : پلیمرهایی که در اثر گرما به پلیمرهای غیر قابل ذوب و انحلال ناپذیر تبدیل می‌شوند.
  • اسفنجها گرمانرم : پلیمرهایی که در اثر گرما می توانند ذوب یا نرم شوند.