کاتالیست های هیدروکراکینگ
سموم کاتالیزور
سموم کاتالیزور موادی هستند که کاتالیزورها را از فعالیت باز میدارند. مثلا مقدار کمی آرسنیک توانایی پلاتین را که کاتالیزور تبدیل سولفور دیاکسید ،به سولفور تریاکسید است، از بین میبرد.
احتمالا در این عمل بر سطح پلاتین ، پلاتینم ارسیند تشکیل میشود و فعالیت کاتالیزوری از میان میرود. جذب اتیلن ، کاتالیزور را موقتا مسموم میکند، درحالیکه جذب پلاتین ، کاتالیزور را بطور دائم مسموم میکند.
اختصاصی بودن فعالیت کاتالیزور
فعالیت کاتالیزورها عمدتا بسیار اختصاصی است. در پارهای موارد ، کاتالیزور معین موجب سنتز نوعی محصولات خاص از بعضی مواد میشود، حال آنکه کاتالیزور دیگر موجب سنتز محصولات کاملا متفاوت دیگری از همان مواد میشود. البته در این موارد امکان وقوع هر دو واکنش از لحاظ ترمودینامیکی میسر است. مثلاکربن مونوکسید و هیدروژن بر هم اثر میکنند و بسته به شرایط واکنش و نوع کاتالیزور مصرف شده ، محصولات بسیار متنوعی ایجاد میکنند.
اگر کبالت یا نیکل بعنوان کاتالیزور بکاربرده شود، مخلوطی از هیدروکربنها بوجود میآورد. در این جا نیکل بعنوان یک کاتالیزور نامرغوب عمل میکند.
و اگر مخلوطی از روی و اکسید کرم بعنوان کاتالیزور مصرف شود، از واکنش متانول تولید میشود.
برای این واکنش ، نیکل یک کاتالیزور مرغوب است.کاتالیزور مرغوب کاتالیزوری است که انتخابی عمل کند.
غیر فعال شدن کاتالیزور
معمولا تمام کاتالیزورها دارای یک عمر معین هستند که پس از سپری شدن آن فعالیت موثر آنها کاهش مییابد که ممکن است بطور ناگهانی یا تدریجی باشد (افت فعالیت). در چنین مواقعی معمولا بسته به نوع و مکانیسم غیر فعال شدن ، باید کاتالیروز را بازیابی یا جایگزین کرد. در این مواقع باید تصمیم بگیریم که آن را تعویض یا احیا کنیم. تصمیم بر اساس مکانیسم های غیر فعال شدن است و مهمترین و متداولترین مکانیسم غیر فعال شدن عبارت است از:
بازیابی کاتالیزور
طبقه بندی سیستم های کاتالیکی
عملکرد کاتالیزورها در دو فار هموژن و هتروژن انجام میگردد. فاز هموژن حالتی است که مواد واکنشدهنده و کاتالیزور در یک فاز قرار میگیرند. حال آنکه اگر عملکرد کاتالیزور و مواد واکنشدهنده در دو فاز مختلف باشد و مرز فیزیکی بین کاتالیزور و مواد واکنشدهنده وجود داشته باشد، چنین فازی را هتروژن میگویند.
کاتالیزورهای جامد
عوامل موثر در فعالیت کاتالیزور
راههای افزایش سطح کاتالیزور
کاربرد کاتالیزور
کاتالیزور در سه بخش به کار می رود:
فسفرسانس و فلوئورسانس پدیده هایی هستند که در آنها یک ماده خاص که بطور عام به آن فسفر گفته میشود پس از قرار گرفتن در مقابل نور مرئی یا غیر مرئی یا حرارت ( تحریک شده ) این انرژی را در خود ذخیره می کند و سپس آن انرژی را بصورت طیفی از امواج مرئی در طول مدت زمانی منتشر می کند .
اگر این بعنوان شباهت این دو پدیده باشد. تفاوت آنها در اختلاف زمانی بین این دو دریافت و تابش یا به عبارت گر دوام تابش است . اگر زمان تحریک کمتر از ۱۰ به توان ۸- ثانیه باشد، این پدیده را Fluorescent می نامیم و اگر زمان تحریک بیش از ۱۰ به توان ۸- ثانیه باشد آن را Phosphorescent می نامیم.به عبارتی در فسفرسنس تحریک طولانی تر و تشعشع طولانی تری..........
داریم و در فلوئورسانس تحریک کوتاهتر تر و تشعشع کوتاهتری تری داریم.در فلوئورسانس که نمونه آن نور مهتابی یا صفحه تلویزیون است تابش آنی است و تقریبا" بلافاصله بعد از قطع نور تمام میشود . در حالی که در فسفرسانس ماده بعد از قطع نور نیز تا مدتی به تابش ادامه میدهد که مقدار آن بسته به ماده مورد استفاده می تواند از چند ثانیه تا چندین روز طول بکشد . در فلوئورسانس برانگیختگی میان دو تراز اصلی با انرژی های E1,E2 اتفاق می افتد که جابجایی بین أنها کاملا" أزاد است .الکترون با دریافت انرژی بر انگیخته شده وبه تراز E2 می رود وپس از 8تا 10 ثانیه دوباره به تراز اول بر می گردد و فتونی با انرژی E2-E1 تابش می کند اما در فسفرسانس ماجرابدلیل وجود یک تراز میانی کمی پیچیده تر است این تراز که مابین تراز پایه و برانگیخته قرار دارد تراز نیمه پایدار می باشد و مانند یک دام برای الکترونها عمل میکند به خاطر شرایط خاص این تراز انتقال الکترون از أن به سایر ترازها ممنوع واحتمال أن بسیار کم است بنابراین چنانچه الکترونی پس از برانگیختگی از تراز E2 در دام تراز نیمه پایدار بیافتد انجا می ماند تا زمانی که به طریقی دیگر مجددا" برانگیخته شود وبه تراز E2 برگردداین اتفاق می تواند تحت تاثیر جنبشهای گرمایی اتمها یا مولکولهای مجاور ویا برانگیختگی نوری روی دهد اما احتمال وقوع أن بسیار کم است به همین دلیل چنین الکترونهایی تا مدتها در تراز میانی می مانند (بسته به ساختار اتمی ماده و شرایط محیطی) وهمین عامل تاخیر در باز تابش بخشی از انرژی دریافت شده است.تحریک این ماده ها به گونه های مختلف انجام می شوند: بمباران فوتونی، الکترونها، یونهای مثبت، واکنشهای شیمیایی، گرما و گاهی اوقات ( مخصوصاً در جانداران ) تنش های مکانیکی... راز کرمهای شب تاب در فسفرسانس است.
برای ساختن مواد درخشنده در تاریکی باید فسفری وجود داشته باشد که با استفاده از نور معمولی انرژی بگیرد و طول تابش ان زیاد باشد.برای مثال دو فسفری که این ویژگی ها را دارند مثل ( Zinc Sulfide ) و ( Strontium Aluminate ). که ( Strontium Aluminate ) بهتر است برای طول تابش بیشتر.
این مواد با پلاستیک مخلوط میکنند و مواد درخشنده در تاریکی را میسازند.
بعضی مواقع ممکن است شما موادی را ببینید که میدرخشند ولی به انرژی احتیاجی ندارند!یکی از ان مثالها بروی عقربه های ساعتهای گران قیمت است.درانها فسفر با یک عنصر رادیو اکتیو مخلوط شده (مثل رادیوم- radium) که ان عنصر با انتشار رادیو اکتیو فسفر را مرتبا با انرژی میکند.
لامپ های فلوئورسنت :
ادامه مطلب ...بعضی از محققین امکان استفاده از گاز فلوئور خالص را بهعنوان سوخت موشک بررسی کردهاند، چون این گاز دارای ضربه مخصوص بالائی میباشد.
- در تولید آلومینیوم فلورید(AlF3) که برای ساخت کریولیت بکار می رود.
- بعنوان رسوبزدا در اسیدشویی فولاد ضد زنگ.
در فرآیندهای زیادی فلوئورید هیدروژن مورد استفاده میگیرد که در ادامه به تعدادی از آنها اشاره شده است.
- سنتز آمونیوم بی فلوراید از واکنش آمونیاک و هیدروژن فلوئورید.
- ساخت پلی تترا فلوئورو اتیلن از پلیمریزاسیون تترا فلوئورومتان،که از اسید کلریدریک گیری مونو کلرو دی فلوئورومتان تولید می شود وخود آن نیز از ترکیب کلروفرم و اسید فلوئوریدریک بدست می آید.
- برای حکاکی روی شیشه در لامپ و محصولات دیگر بکار میرود.
در تولید کریستال های تزئینی و مات کاری شیشه آلات ،مقررات محیط زیست در بسیاری از کشورها ایجاب می کند، میزان پخش فلوریدها در هر متر مکعب از هوای خروجی واحدهای صنعتی نبایستی بیشتر از 5 میلی گرم باشد.
ادامه مطلب ...
الماس یکی از سخت ترین جامدات شناخته شده است. معروفترین معادن الماس دنیا در جنوب و غرب آفریقا قرار دارد. الماس این نواحی معمولاً در کندوکاو خاک آتشفشان های خاموش بدست می آید. دانشمندان معتقدند این الماس ها به کندی و اثر فشار و حرارت بسیار زیاد شکل گرفته اند. الماس ها به همان زیبایی و درخشندگی ای که درجواهر فروشی ها دیده می شوند نیستند بلکه هنر بریدن و تراش دادن، درخشندگی و تلألو آنها را آشکار می کند.
ادامه مطلب ...کارن وترهان یک پروفسور بین المللی شیمی و یک محقق ماهر در زمینه اثر فلزات سنگین بر روی سیستم های زنده و بویژه نقششان در ایجاد سرطان بود . اما خود او سرانجام قربانی یک فلز سنگین سمی شد .
او در حال مطالعه طریقه ی اثر کردن یونهای جیوه بر پروتئینهای تعمیر کننده DNA بود
و Hg(CH3)2 را به عنوان یک ماده مرجع استاندارد برای اندازه گیری 199Hg NMR بکار برد.
وترهان از سمی بودن بسیار جیوه آگاه بود و برای همین اقدامات احتیاطی لازم را بکار برد ،در حالیکه عینک ایمنی می زد و از دست کش های لاستیکی استفاده می کرد آزمایش را در زیر یک هود انجام می داد و تنها با مقادیر کوچک ماده ی جیوه ای کار میکرد.
دی متیل جیوه در یک سل شیشه ای بسته شده قرار گرفت .یکی از همکارانش برای کاهش اثر فراریت این ماده ،سل را در آب یخ سرد می کرد . وترهان یک نمونه ی کوچک را با پیپت به لوله NMR
انتقال داد ،ظرف را بست ،لوله ها را برچسب زد و دستکش های لاستیکی اش را به خوبی شستشو داد و دور انداخت . کمتر از یکسال او به واسطه اثر جیوه ی سمی کشته شد !!!
چرا او مرد؟
وترهان بعد ها به یاد آورد که یک قطره ( احتمالا بیشتر ) از دی متیل جیوه بر روی دستکشهایش ریخته است. متعاقبا آزمایشها نشان داد که این قطره توانسته از دستکش نفوذ کند و ظرف مدت 15 ثانیه وارد پوستش شده است . امروزه هنگام کار کردن با ترکیبات سمی این چنینی از دستکشهایی که یک ورقه مقاوم دارند در زیر یک جفت دستکش های آستین دار نئوپرن استفاده میکنند.
در ژانویه 1997 وترهان از ظهور علایم معینی نظیر لرزش انگشتان دست و پا و لکنت زبان نگران شد .
سپس مشکلاتی از بابت تعادلش آغاز شد و زمینه دیدش کم شد . جیوه سمی در 28 ژانویه 1997 تشخیص داده شد . آزمایشها معلوم کردند که میزان جیوه خون، 4000 میکروگرم بر لیتر است که 80 برابر آستانه سمی بودن است . دو هفته بعد او به حالت اغما رفت و مرگ او در 8 ژوئن 1997 رخ داد .
دی متیل جیوه :
دی متیل جیوه در دمای اتاق مایع است و بوی کمی شیرینی دارد . در فشار اتمسفر نقطه جوشش
92 0C است و دانسیته اش (چگالی )96/2 گرم بر سانتیمتر مکعب است . دی متیل جیوه از نظر شکلی ساختار خطی دارد و شبیه بسیاری از سیستمهای HgX2است . (طول پیوند Hg – C برابر
083/2 انگستروم است)
دی متیل جیوه یکی از قویترین سموم اعصاب شناخته شده است . این ماده به راحتی از سد خون – مغز می گذرد و شاید منجر به تشکیل یک کمپلکس متیل جیوه سیستئین شود . این ترکیب سبب اختلال حسی ،فقدان تعادلی و تغییر در حالت روانی میشود .
به طور کلی جیوه یک اسید نرم است بنابراین با اتمهای دهنده ی براحتی قطبش پذیر در بازهای نرم پیوند می شود .این به یون جیوه تمایل زیادی برای پیوند با گوگرد و لیگاندهای حاوی اتم گوگرد را می دهد .بنابراین هنگامی که وارد بدن شد به گروههای تیول آنزیمها حمله می کند و از عملکرد آنها جلوگیری میکند.
Zeise اولین لیگاند های مرکاپتان را ساخت و نامشان را بر اساس عبارت لاتین Mercurium captans (تسخیر کننده و اسیرکننده ی جیوه Capturing mercury ) ابداع کرد.
سنگ معدن اصلی جیوه سولفور سیماب HgS است . که از معادن مهمی نظیر Almaden در اسپانیا و
Idria و
● جنس زغال و الماس هر دو از کربن است. این، به رفتار اتمهای کربن بستگی دارد که به زغال تبدیل شوند یا الماس شوند. زمانی که می توان الماس بود، چرا زغال باشیم؟
● فلوئور با ارادهترین عنصر است. او حتی آرگون تنبل را به انجام واکنش وادار می کند. (اشاره به مولکول ArF4 و ArF6)
●فلوئور، در دوستی سنگ تمام می گذارد. اگر با عنصری دست رفاقت بدهد، هیچ چیز نمی تواند او را از رفیقش جدا کند. او با همهی علاقهای که به حفظ الکترونهایش دارد، هنگامی که کمبود بور را نسبت به الکترود می بیند، او را در الکترونهای خود سهیم میکند (BF3).
● هر چه اتمها بزرگتر می شوند (شعاع اتمی که بیشتر می شود)، از داراییهای خود (یعنی الکترونها) راحتتر می گذرند. برخلاف انسانها که هر چه مسنتر می شوند به آن چه دارند، وابستگی بیشتر پیدا می کنند و بخشش کمتری از خود نشان می دهند.
● آب با همهی لطافت و نرمی که دارد، از سرسختترین مواد به شمار می رود. اگر دستش به بلور نمک برسد، شبکهی سخت آن را چنان درهم می شکند که با وجود همهی آن نیروی جاذبهی قوی که میان یونها وجود دارد، هر یک به سویی می گریزند و به محاصره مولکولهای آب درمی آیند؛ کاری که از هیچ پتک یا چکشی برنمی آید.
● همیشه نباید برای رسیدن به کمال، چیزی را به دست آورد. گاه گذشتن از چیزهایی که داریم، راه کمال را پیش روی ما می گشاید. درست مانند سدیم که تا از آخرین الکترون لایهی ظرفیتش نگذرد به آرایش الکترونی کامل دست نمی یابد.
● هر چه اندازهی مولکول در هیدروکربنها بیشتر می شود بهتر و قویتر یکدیگر را جذب می کنند و به هم نزدیکتر می شوند. اما چرا برخی از انسانها هر چه بزرگتر می شوند، بیشتر از هم فاصله می گیرند؟
● چه صبری دارد این آب! دیر جوش می آورد و زیر فشار دیرتر از کوره در می رود.
● اکسیژن رفیق نابابی است. همنشینی با او سرانجامی جز خاکستر و دود شدن در هوا ندارد.
● بیچاره منیزیم وقتی به اکسیژن می رسد، چشمانش چه برقی می زند! بی آنکه بداند اکسیژن چه خوابی برایش دیده است، با شوق به استقبال دشمن جانش می رود.
● هنگامی که مواد وارد جمع می شوند (مخلوط تشکیل می دهند)، اصالت خود را حفظ می کنند. برخلاف برخی از آدمها که با ورود به هر محیط تازه، به رنگ جمع درمی آیند.
● گرمای تشکیل ترکیبها منفی است. یعنی عنصرها «با هم بودن» را بیشتر دوست دارند. پس چرا برخی از ما بر طبل جدایی می کوبیم؟
● عشق را باید از سدیم آموخت که وقتی به آب می رسد از شوق رسیدن به دوست، ذوب می شود و همهی هستی را فدای یار می کند، چنان که دیگر اثری از او بر جای نمی ماند. تنها یک قطره فنول فتالیین کافی است تا خونی را که نثار کرده است، نشان دهد.
● زباله را ببینید، حتی زباله هم بکار می آید. برای همین نام «طلای کثیف» به آن دادهاند. چه قدر بد است که از ما کاری برنیاید.
● اگر به واکنشی که در حال تعادل است، تغییری تحمیل شود، واکنش با این تغییر مبارزه می کند تا اثر آن را تا جای ممکن تعدیل کند. افسوس که برخی از ما خیلی زود تسلیم محیط اطراف خود می شویم.
● طلا و پلاتین فلزهایی ثابت قدم هستند. چون در برابر شرایط مناسبی که وجودشان را به خطر می اندازد، پایداری نشان می دهند و تلاش می کنند که اصالت خود را هم چنان حفظ کنند.
● پیوند I-I از پیوندهای Br-Br و Cl-Cl سستتر است. جای تأسف است که مولکولهای دو اتمی این هالوژنها، هر چه بزرگتر می شوند، ارتباطشان ضعیفتر و پیوندشان سستتر می شود.
● می دانید چرا پیوند F-F با این که از Cl-Cl کوتاهتر است، سستتر است؟ اتمهای فلوئور در دوستی با یکدیگر حدی را رعایت نمی کنند. خودمانی شدن زیاد هم می تواند مشکل ساز باشد.
● برخی عنصرها مانند لیتیم و بریلیم، که کوچکترین عضو خانوادهی خود هستند، گویی تافتهی جدا بافتهاند! آنها در برابر قوانین خانوادگی نافرمانی نشان می دهند. جالب است که افراد دیگر خانواده هم در برابر سرپیچی آنها سکوت کردهاند.
منبع:www.dianat124.blogsky.com
● کنترل خانوادهی پرجمعیت کار دشواری است. اتم کربن، خانوادهی کم جمعیت خود را خوب اداره می کند و هوای الکترونهایش را دارد. اما سرب که هم گروه با کربن است، در برابر برخی عنصرهای سودجو، از نگهداری الکترونهایش ناتوان است و دو یا چهار الکترون از دست می دهد.
● سوختن آلکانها، فرایندی برگشتناپذیر است. راستی چرا این ترکیبها بدون توجه به سرانجامی که در انتظارشان است، به سرعت و بدون هیچ پایداری، گام در راه نابود کردن خود می گذارند؟
● هنگامی که الکترونها سوار اتوبوس زیرلایه می شوند، نخست هر یک از آنها یک صندلی دوتایی را برای نشستن انتخاب می کنند. الکترونهایی که دیرتر می رسند، اگر صندلی دوتایی خالی پیدا نکنند، کنار الکترونهای نشسته می نشینند. ما هم همین کار را می کنیم، مگر نه؟
● در رسم ساختار لوویس، پدر خانواده (اتم مرکزی در مولکول) نخست الکترونها را میان فرزندان خانواده (مولکول) تقسیم می کند. هنگامی که پدر با کمبود الکترون روبرو می شود، فرزندان پدر را در الکترونهای خود شریک می کنند.
● آب، واقعاً مادهی شگفتانگیزی است. اگر آب نبود هیچ بندهی پشیمانی بر گذشتهی بد خود نمی گریست، مروارید اشک بر گونهی هیچ بندهی سحرخیزی نمی غلتید، بر پیشانی هیچ گناهکاری عرق شرم نمی نشست، هنگامی که پس از سالها دوری، به عزیزی می رسیدیم، نمی توانستیم اشک شوق بریزیم و اگر کار نادرستی از ما سر می زد، نمی دانستیم از خجالت، چه بشویم ...
اطلاعات اولیه
سلنیوم یک عنصر شیمیایی جدول تناوبی است که نماد آن Se و عدد اتمی آن 34 میباشد. این عنصر یک نافلز سمی بوده که از نظر شیمیایی به گوگرد و تلوریم شباهت دارد. این عنصر در شکلهای گوناگون وجود دارد، ولی بیشتر به شکل شبه فلز که هادی جریان الکتریسیته میباشد، بوده ، در سلولهای نوری کاربرد دارد. این عنصر در معادن سولفید مانند پیریت یافت میشود.
تاریخچه
سلنیوم که لاتین آن Selene به معنی ماه میباشد، در سال 1817 توسط "Jons Jacob Berzelius" که ارتباط این عنصر با تلوریوم را دریافت، کشف شد. کاربردهای گسترده این عنصر از قبیل استفاده آن در ترکیبات لاستیکی آلیاز فولاد و یکسو کنندههای سلنیومی باعث رشد چشمگیری در مصرف این عنصر شد. در سال 1970 سلنیوم جایگزین سیلیکن در یکسو کنندههای برق شد، اما کاربرد گسترده آن بهعنوان رسانای نور در کاغذ کپی مهمترین استفاده آن بود.
در طی دهه 1980 با تولید رساناهای نور آلی ، استفاده از سلنیوم به عنوان رسانای نور منسوخ شد. در سال 1996 رابطه مثبتی در خصوص مصرف سلنیوم و خاصیت ضد سرطان آن کشف شد، اما کاربرد گسترده و مستقیم این کشف بزرگ نمیتوانست بهصورت قابل توجهی تقاضای آن را در دوز های مصرفی کوچک بکند. در اواخر دهه 1990 کاربرد سلنیوم (معمولا با بیسموت) بهعنوان یک ماده اضافه کننده در لوله کشی برنجی برای داشتن یک محیط بدون سرب افزایش یافت.
پیدایش
سلنیوم بهصورت سلنید از کانیهای سولفیدی مانند مس ، نقره و سرب بدست میآید. این عنصر از گل و لای آنودی مس و گل و لای سربی حاصل از گیاهان اسید سولفوریک بهصورت یک محصول جانبی بدست میآید.
خصوصیات قابل توجه
ادامه مطلب ...
خوردگی از 8 روش می تواند به سطوح فلزی حمله کند. این 8 روش عبارتند از :
حمله یکنواخت Uniform Attack
در این نوع خوردگی که متداول ترین نوع خوردگی محسوب می شود ، خوردگی به صورتی یکنواخت به سطح فلز حمله می کند و به این ترتیب نرخ آن از طریق آزمایش قابل پیش بینی است .
خوردگی گالوانیک Galvanic Corrosion
این نوع خوردگی وقتی رخ می دهد که دو فلز یا آلیاژ متفاوت ( یا دو ماده متفاوت دیگر همانند الیاف کربن و فلز ) در حضور یک ذره خورنده با یکدیگر تماس پیدا کنند . در منطقه تماس ، فرایندی الکترو شیمیایی به وقوع می پیوندد که در آن ماده ای به عنوان کاتد عمل کرده و ماده دیگر آند می شود . در این فرآیند کاتد در برابر اکسیداسیون محافظت شده و آند اکسید می شود .
خوردگی شکافی Crevice Corrosion
این ساز و کار وقتی رخ می دهد که یک ذره خورنده در فاصله ای باریک ، بین دو جزء گیر کند . با پیشرفت واکنش ، غلظت عامل خورنده افزایش می یابد . بنابراین واکنش با نرخ فزاینده ای پیشروی می کند.
آبشویی ترجیحی Selective Leaching
بیش از دو هزار سال است که زئولیت ها در زندگی روزمزه انسان مورد استفاده قرار می گیرد(Mumpton, 1981). در سال های اخیر به موارد کاربرد زئولیت های طبیعی اهمیت خاص داده شده است و برنامه هایی برای استفاده از زئولیت های رسوبی در بسیاری از کارهای صنعتی و کشاورزی دردست اقدام است. توف های زئولیتی آبگیری شده به عنوان جذب کننده برای خروج نیتروژن آمونیاکی از آب های آلوده خارج شده از کارخانه ها به استخرهای پرورش ماهی و فاضلاب ها به کار می رود. زئولیت ها علاوه بر اینکه به عنوان مصالح ساختمانی سبک مورد استفاده قرار می گیرند بلکه در سیمان های پوزولانی و سرامیک مصرف می شوند. علاوه بر این ها زئولیت ها در صنایع کاغذ سازی به جای کائولن(Kuzvant,1984)، در محل های کشاورزی، در دامداری و در صنعت مواد کاربرد زیادی دارد.
الف- کنترل آلودگی :
الف – 1 – مدفون کردن یا تجزیه و تخریب زباله های رادیو اکتیو :
خلاصه:
طیفسنجی رامان برای شناسایی ساختار مولکولی بسیار مناسب است با این روش تعیین فرکانسهای چرخشی و ارتعاشی مولکول، ارزیابی هندسی و حتی تقارن مولکولها امکان پذیر است. در برخی موارد که امکان تعیین ساختار مولکولی وجود ندارد، میتوان با تکیه بر فرکانسهای ثبت شده، قرار گرفتن اتمها در یک مولکول را بررسی کرد. اطلاعاتی که توسط طیف سنجی مادون قرمز و رامان به دست میآید، بسیار مشابه هستند. به تازگی ساختار پیچیده مولکولهای زیستی با طیف سنجی رامان تعیین شده است. طیف رامان اطلاعات با ارزشی را نیز در زمینه فیزیک حالت جامد ارائه میکند.
ادامه مطلب ...اندازه گیری اسیدیته :
اسیدیته آب عبارت از میزان یون هیدروژن اضافی است که در مقابل یون هیدروکسید موجود در آب وجود دارد. در طبیعت بیشترین عامل اسیدی شدن آبهای شیرین که بوسیله فضولات صنعتی آلوده شده اند و وجود دی اکسید کربن آزاد بشکل اسید کربنیک می باشد. اسیدیته آب را میتوان به کمک یک سود قوی مانند سود سوز آور و در مجاورت معرفهای متیل اورنژ و فنل فتالئین اندازه گیری نمود. اگر آب مورد آزمایش محتوی اسیدهای قوی معدنی ونمکهای آنها باشد ، میتوان آن را در PH=3.7 و با کمک معرف متیل اورنژ اندازه گیری نمود،که نتیجه آنرا اسیدیته قلیائیت گویند، ولی اگر آب مورد آزمایش را با کمک فنل فتالئین و در PH=8.3 اندازه گیری نمائید نتیجه بدست آمده را اسیدیته کل می نامند.
مواد مورد نیاز :
1- متیل اورانژ :
5/0 گرم متیل اورانژ را در یک لیتر آب مقطر حل کنید .
2- فنل فتالئین :
5/0 گرم فنل فتالئین ( Phenol Phetalein disodium salt) را در cc 50 الکل اتیلیک حل نموده و با آب مقطر به حجم cc 100 برسانید. قطره قطره سود نرمال بآن بیفزائید تا رنگ صورتی ظاهر شود.
3- هیدروکسید سدیمN 05/0 :
cc 10 سود 5 نرمال را در آب مقطرحل کرده و به حجم یک لیتر برسانید.
روش آزمایش :
1-cc 100 از آب مورد آزمایش را در ارلن مایر بریزید.
2- 3 قطره متیل اورانژ بآن بیفزائید. اگر رنگ زرد شد نشانه آن است که اسیدیته متیل اورنژ وجود ندارد، درصورتیکه محلول صورتی رنگ شد آن را با هیدروکسید سدیمN 05/0 تیتر کنید تا تغییر رنگ از از صورتی به زرد مشاهده شود.درجه بورت را یادداشت کنید.
3- به همان محلول 3 قطره فنل فتالئین بیافزایید. آن را با هیدروکسید سدیمN 05/0 تیتر کنید تا تغییر رنگ از از زرد به صورتی کمرنگ مشاهده شود.درجه بورت را یادداشت کنید.
Methl orange acidity mg/l as NaCO3 = A × N of NaOH × 1000 × 50 / ml of sample
Phenolphthalein acidity mg/l as NaCO3=B × N of NaOH × 1000 × 50 / ml of sample
Total acidity mg/l as NaCO3 = ( A + B ) × N of NaOH ×1000 × 50 / ml of sample
A = مقدار محلول سود مصرف شده در زمانیکه از معرف متیل اورنژ استفاده شده (PH = 3.7 )
B = مقدار محلول سود مصرف شده در زمانیکه از معرف فنل فتالئین استفاده شده (PH = 8.3 )
خلاصه :
علوم و فناوری نانو در دهه 1980 میلادی توسط فیزیکدان آمریکایی - ریچارد فاینمن - تشریح شد. در این فناوری خواص فیزیکی مواد نانوابعاد در حوزهای بین اثرات کوانتومی و خواص توده قرار میگیرد. علوم نانو محصول مطالعات دانشمندان در رشتههای مختلف بوده است که با راهحلها و روشهای گوناگون و خلاقانه به صورت علوم بین رشتهای درآمده است . محققان و سیاستگذاران سراسر جهان انتظار دارند که علوم نانو موجب تغییرات وسیعی در نحوه زندگی شود.
در این نوشتار، ضمن بررسی فرایند کراکینگ / شکست کاتالیستی، انواع کاتالیستهای مورد استفاده در این فرایند و تاثیر فناوری نانو بر آنها که منجر به ایجاد نسل جدیدی از کاتالیستها با نام "نانوکاتالیستها" شده، بررسی گردیده است.
مقدمه
پالایش نفت با تقطیر جزء به جزء نفتخام به گروههای هیدروکربنی شروع شده و خواص محصولات مستقیماً متناسب با نحوه انجام فرآیند تبدیل نفت میباشد.
فرآیندها و عملیات پالایش نفت به پنج بخش اصلی تقسیم میشود :....
الف) تفکیک (تقطیر) ب) فرآیندهای تبدیلی که اندازه و ساختار ملکولی هیدروکربنها را تغییر میدهند این فرآیندها شامل: ب-1) تجزیه (تقسیم) ب-2) همسانسازی(ترکیب) ب-3) جایگزینی(نوآرائی) میباشند.
ج) فرآیندهای عملآوری د) تنظیم و اختلاط
فرایند تجزیه که از زیر شاخههای فرایندهای تبدیلی محسوب میشود، شامل هیدروکراکینگ، شکست کاتالیستی و شکست گرمایی میشود.
پلیمریزاسیون
Amethyst
Borax
Aragonite
Copper Sulfate
Quartz
برای دیدن کریستالهای بیشتر به این آدرس مراجعه فرمایید.
سختی آب و اثرات آن
آب سخت
آب سخت آبی است که حاوی نمکهای معدنی از قبیل ترکیبات کربناتهای هیدروژنی ٬ کلسیم ٬ منیزیم و... است.
اهمیت سختی آب
مقدار سختی آب ، علاوه بر اینکه در آبهای صنعتی اهمیت وافر دارد، از نظر بهداشت عمومی نیز اهمیت خاصی دارد. کلسیم که یکی از عوامل سختی آب است، در رشد استخوان و حفظ تعادل بدن دخالت داشته، ولی به همان اندازه ، سولفات کلسیم به علت کمی قابلیت هضم ، ناراحتیهایی در دستگاه هاضمه بوجود میآورد.
گاهی توصیه میشود که جهت تامین بهداشت و سلامت مصرف کنندگان ، آهک به آب آشامیدنی افزوده شود. بعضی دانشمندان معتقدند، بهتر است کلسیم و منیزیم لازم بدن توسط غذا تامین شود و حتیالامکان از آبهای سبک برای شرب استفاده شود. باید توجه داشت که بدن نسبت به سنگینی موجود در آب مورد مصرف خود حساسیت دارد، چنانچه این نوشیدنی تغییر یابد، ممکن است در دستگاه گوارش ایجاد اخلال نماید و این موضوع را به اصطلاح آب به آب شدن میگویند.
املاح محلول در آب و اثرات آنها
املاح موثر در تولید سختی :
Mg(OH)2, MgCO3, MgHCO3, Mg(NO3)2, MgCl2, MgSO4, Ca(OH)2, CaCO3, CaHCO3, Ca(NO3), CaCl2, CaSO4
املاح غیر تاثیر گذار در سختی:
K2SO4, KCl, KNO3, Na2SO4, NaCl, NaNO3
تاثیر قلیائیت در سختی آب
اگر قلیائیت کل آب ، مساوی یا بیشتر از سختی کل باشد، تمام سختی آب به صورت سختی کربناتی خواهد بود. در صورتی که که قلیائیت کل ، کمتر از سختی باشد، سختی کربناتی آب معادل قلیائیت بوده و سختی دائم ، اختلاف بین سختی کل و قلیائیت است.
واحدهای بکار رفته در سختی آب
در صورتی که مقادیر کاتیونهای مختلف برحسب میلی گرم بر لیتر (ppm) در دست باشد، معمولا جهت سهولت ، به کمک فاکتورهایی که از تقسیم وزن مولکولی کربنات کلسیم به وزن اتمی هر یک از عناصر بدست آمده ، کلیه این مقادیر برحسب کربنات کلسیم محاسبه و بیان میگردد. سختی آب ، معمولا بر حسب ppm یعنی mg/lit بیان میشود. علاوه بر این ، واحدهای آلمانی ، انگلیسی ، فرانسوی ، آمریکایی را نیز در بیان آن بکار میبرند؛
هر یک از درجات فوق به ترتیب برابر 17.9 و 14.3 و 10 و 17.2 میلی گرم در لیتر کربنات کلسیم است.
اندازه گیری سختی آب
جداسازی یونهای فلزی آلاینده آب ، مسئلهای است که شماری از متغیرها آن را پیچیده میکند. از جمله این متغیرها میتوان PH و حضور مواد آلی را نام برد. بهعنوان نمونه ، کاملا معلوم شده است که فلزاتی مانند (Pb (II و (Hg (II که برای بیشتر موجودات زنده سمیاند، در جریان فرایندهای مختلفی به درون سیستمهای آبی راه مییابند. تولید سلاحهای هستهای نیز مشکلات فضولات خطرناک را بوجود آورده است.
بازیابی فلزات
هم به دلایل زیست محیطی و هم اقتصادی ، علاقه فزایندهای به بازیابی فلزات گرانبها وجود دارد. مشکلی جدی که بر سر راه خارج کردن یونهای فلزی وجود دارد، آن است که غلظت گونههای مورد نظر برای عملی شدن جداسازی ، اندک است و ضمنا این گونهها به صورت مخلوطهای پیچیدهای هستند. مثلا فضولات پرتوزا نهتنها حاوی رادیو نوکلئیدها هستند، بلکه یونهایی مانند سدیم ، پتاسیم و کلسیم را (که از لحاظ زیست محیطی ضروری نیستند) نیز در غلظتهای زیاد شامل میشوند. این یونهای بیضرر میتوانند مواد استخراج کننده را پیش از آنکه بتوانند یونهای سمی را بطور موثری خارج سازند، اشباع کنند.
روشهای حذف یونهای فلزی
استخراج حلالی
در استخراج حلالی ، آب آلوده با ماده استخراج کننده آلی که در آب حلناپذیر است، تماس پیدا میکند. استخراج کننده قادر است یون را مبادله کند یا با یون فلزی ، کیلیت بوجود آورد. بر اثر همزدن ، یونهای فلزی به فاز آلی انتقال مییابند. سپس مهلت میدهند تا فازها از هم جدا شوند و آنگاه یونهای فلزی را با محلول مناسبی از فاز آلی حامل آنها جدا میکنند. این محلول غلیظ یون فلزی را میتوان تخلیص کرد یا دور ریخت.
رزینهای تبادل یونی
متن این مقاله به صورت فایل pdf قابل دریافت می باشد.
پلاستیک های زیستی
اطرافمان انباشته از پلاستیک شده است. هر کاری که انجام می دهیم و هر محصولی را که مصرف می کنیم، از غذایی که می خوریم تا لوازم برقی به نحوی با پلاستیک سروکار داشته و حداقل در بسته بندی آن از این مواد استفاده شده است. در کشوری مثل استرالیا سالانه حدود یک میلیون تن پلاستیک تولید می شود که ۴۰ درصد آن صرف مصارف داخلی می شود. در همین کشور هرساله حدود ۶ میلیون بسته یا کیسه پلاستیکی مصرف می شود. گرچه بسته بندی پلاستیکی با قیمتی نازل امکان حفاظت عالی از محصولات مختلف خصوصاً مواد غذایی را فراهم می کند ولی متاسفانه معضل بزرگ زیست محیطی حاصل از آن گریبان گیر بشریت شده است. اکثر پلاستیک های معمول در بازار از فرآورده های نفتی و ذغال سنگ تولید شده و غیرقابل بازگشت به محیط هستند و تجزیه آنها و برگشت به محیط چند هزار سال طول می کشد. به منظور رفع این مشکل، محققان علوم زیستی در پی تولید پلاستیک های زیست تخریب پذیر از منابع تجدیدشونده مثل ریزسازواره ها و گیاهان هستند.