شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

مرحله اول تقطیر نفت خام در پالایشگاه

مرحله اول تقطیر نفت خام در پالایشگاه 

 

لینک

شیمی سبز چیست؟

اصطلاح شیمی سبز در رابطه با طراحی محصولات و فرآیندهای شیمیایی است که در تولید و استفاده از مواد خطرناک را کاهش داده یا کاملاً از بین می­برد. این روش در ایالت متحده با تصویب قانون جلوگیری از آلودگی را کاهش داده یا کاملاً از بین می­برد. این روش در ایالت متحده با تصویب قانون جلوگیری از آلودگی درسال 1990 آغاز شد. این قانون پایه­گذار سیاست­های دولتی ایالات متحده برای کاهش یا جلوگیری از آلودگی در منشاء آن، هر کجا که امکان­پذر باشد بود.
این قانون همچنین راهی برای اجرای اقدامـاتی فراتـر از آنـچه توسط برنامه­های سازمان محافظت از محیط زیسـت EPA ایالـت متحده انجام می­شود و برنامه­ریزی استراتژی­های خلاقانه برای محافظت از سلامتی انسان­ها و محیط زیست فراهم کرد. طبق این قانون، کاهش آلودگی در منشاء «اساساً متفاوت و مطلوب­تر از مدیریت زباله و کنترل آلودگی است».


پس از تصویب این قانون، اداره­ی جلوگیری از آلودگی و مواد سمی آژانس محافظت از محیط زیست OPPT ایده ایجاد یا بهبود محصولات و فرآیندهای شیمیایی جهت کاهش خطرات آن­ها در دست بررسی قرار داد. در سال 1991، OPPT یک برنامه آزمایشی را آغاز کرد. طبق این برنامه، برای اولین بار، کمک مالی به پروژه­های تحقیقاتی مربوط به جلوگیری از آلودگی در تولید مصنوعات شیمیایی عرضه شد. از آن زمان تا کنون، برنامه­ی شیمی سبز سازمان محافظت از محیط زیست با دانشگاه­ها، صنایع، دیگر آژانس­های دولتی و سازمان­های غیردولتی همکاری نزدیکی برای جلوگیری از آلودگی از طریق اجرای شیمی سبز ایجاد کرده است.


طرز کار شیمی سبز
ادامه مطلب ...

ساعت یدی

ساعت یدی  نام آزمایشی است با مولکول ید ( I2 ) وسدیم تیوسولفات (     NaS2O3 )  . سرعت این واکنش مانند اکثر واکنش ها به غلظت ودما  بستگی دارد . با تغییر وازدیاد  غلظت هریک از واکنشگرها سرعت افزایش می یابد .

آزمایش کلی به این ترتیب است که ابتدا  با افزایش آب اکسیژنه به مخلوط سولفوریک اسید و (پتاسیم یدید)KI  می توان ید تهیه نمود .

                          2KI + H2SO4 + H2O2  ------------- K2SO4 + I2 + 2H2O

ید  رنگ نشاسته موجود در مخلوط آزمایش را آبی می کند . حال اگر به این مخلوط تیوسولفات اضافه شود . ید وارد واکنش می شود . رنگ آبی کم کم ازبین می رود .

                                     I2 + 2 Na2S2O3------------- 2NaI + Na2S4O6 

چنانچه ید اضافی باقی بماند سبب  آبی رنگ شدن نشاسته می شود.

نحوه آزمایش به این شکل است که ابتدا محلولی از مخلوط پتاسیم یدید وسدیم تیوسولفات با غلظت مشخص و معین تهیه می کنند ( محلول الف ) سپس  درچند لوله آزمایش به تساوی حجم ثابتی از این محلول  ریخته وبه آن ها   حجم  مناسبی  سولفوریک اسید رقیق وچند قطره چسب نشاسته می افزایند  (لوله های A) .

به همان تعداد درچند لوله آزمایش دیگر محلول پر اکسید هیدروژن که با غلظت معین رقیق نموده اند . با حجم های مثلا  5 ٬10 ٬ 15 .....آماده می  کنند. ( لوله های B ).

 در مرحله آخر همزمان هریک از محلول های لوله های ( A) را به محتویات لوله های( B ) می  افزایند وزمان  انجام  واکنش را درهر لوله آزمایش  اندازه گیری  می کنند. چون حجم محلول  در لوله های B به یک اندازه افزایش یافته فاصله زمان انجام واکنش درآن ها برابر خواهد بود .

کاتالیزورهای زیست محیطی نویدبخش کاستن از آلاینده ها

"تترا آمیدو ماکروسایکلیک لیگند ها (TAMLs)" کتالیزورهایی سازگار با محیط زیست هستند که کاربردها فراوانی در کاهش و یا زدودن آلاینده ها دارند. دانشمندان این کاتالیزورها را نخستین نمونه "شیمی سبز" می دانند.

تری کالینز، مخترع این کاتالیزور از دانشگاه کارنگی ملون امریکا معتقد است که این کاتالیزورها این توانمندی را دارند که کاربردهای گسترده تر و موثرتری از آنچه قبلا به اثبات رسیده است، داشته باشند.
این کاتالیزورها اکسیداسیون، نخستین مشابه های بسیار موثر آنزیم های پروکسی دیاز هستند که اگر با پروکسید هیدروژن همراه شوند، می توانند الاینده های زیانبار را به موادی با سمیت کمتر تبدیل کنند.
Fe-TAMLs که از عناصر معمولی بیوشیمی ، کربن، هیدروژن، نیتروژن و اکسیژن قرار گرفته در پیرامون کانونی از جنس آهن راکتیو تشکیل می شوند درجه سمیت بسیار کمتری دارند و با غلظت های بسیار بسیار کم قابل استفاده هستند. از این گذشته ترکیب آنها، پیوندهای فوق العاده محکمی ایجاد می کند که عناصر واسطه ای که در اثنای واکنش با پروکسید هیدروژن به وجود می آیند و فوق العاده واکنش پذیر هستندنیز نمی توانند آنها را متلاشی کنند.
کالینز استاد شیمی و مدیر مرکز علوم سبز در دانشگاه کارنگی ملون است. او می گوید با شناخت دقیق مکانیک واکنش ها، می توان این کاتالیزورها را به نحوی تنظیم کرد که قدرت تاثیر آنها بازهم بیشتر شود.
تحقیقات گروه "کالینز" نشان داده است که Fe- TAMLsتوانمندی فوق العاده ای برای تهیه جایگزین هایی پاک و بی خطر برای رویه های صنعتی موجود هستند و می توانند راه هایی را برای رفع دیگر مشکلات حاد زیست محیطی که در حال حاضر راه حلی ندارند، ارایه دهند.
اثر این کاتالیزور ها در متلاشی کردن ترکیبات استروژنی، پاک کردن پساب های کارخانجات نساجی، کاهش آلاینده های سوختی، تصفیه پالپ (خمیر کاغذ) و فراورده های جانبی فرآیند تولید کاغذ و زدون نوعی آلودگی ناشی از میکروب سیاه زخم ثابت شده است.
علاقمندان برای مطالعه بیشتر در این زمینه می توانند به نشانی زیر مراجعه کنند.
http://www.chem.cmu.edu/groups/Collins/index.html.
مرجع: مجله شیمیدان

نکات ایمنی در خصوص گاز H2S

نکات ایمنی در خصوص گاز H2S

H2S چیست؟

•       یک گاز بسیار سمی است که می تواند در یک لحظه راههای تنفسی را فلج کند و موجب مرگ گردد ودربعضی فرایندهای صنعتی و زیست محیطی مانند بهره برداری نفت ، حفاری ، پالایشگاه ، شیلات ، کشاورزی و فاضلاب وجود دارد.همراه با نفت با شعله آبی می سوزد و ایجاد سولفور نیدریت (SO2 ) می کند . SO2 از هوا سنگین تر است در نتیجه همیشه در پایین جمع می شود. در روزهای مرطوب و مه آلود میزان آن بیشتر خواهد بود.گاز هیدروژن سولفوره در نزدیکی سطح زمین و در گودیها و همچنین مکانهایی که با موانع محصور هستند به علت سنگینی و غلظت زیاد خطرات بیشتری دارد. گازی است که در گل حفاری به سادگی حل می شود و به تمام وسایل فلزی که با گل حفاری در تماس هستند لطمه می زند .چون از هوا سنگین تر است معمولاَ در محیط های بسته و در پایین جمع می شود (نزدیک پایه های دکل نفت در دریا – در حوالی Pits, Shall Shaker و پمپ ها و محوطه درینها ، در محوطه Caller Deck).

•          اثرH2S  بر بدن انسان

        زمانی که استنشاق میشود ، از طریق ریه ها بطور مستقیم وارد جریان خون می شود . اگر مقدار کم باشد H2S بلافاصله با اکسیزن خون خنثی می شود ولی وقتی مقدار H2S در خون بالا است قسمت بازمانده آن خون را مسموم می کند. با رسیدن خون مسموم به مغز تمام مراکز مغزی که فعالیت های تنفسی را کنترل می کنند فلج می شوند. ششها از کار می ایستند و موجب خفگی می گرد میزان تاثیرات H2S روی بدن به موارد زیر بستگی دارد:

•          زمان = مدت تنفس H2S

•          تکرار = مراتبی که شخص در معرضH2S  قرار گرفته در یک مدت کوتاه

•          مقدار H2S = غلظت  H2S موجود در هوای تنفس شده

•          مقاومت بدنی = قوی بودن یا ضعیف بودن فرد

•          مشکلات تنفسی و آسم

•          دلایل دیگر = وجود الکل در خون – مشکلات روانی و غیره

علائم مسمومیت:

  1. خارش چشم و سوزش و تورم زیاد چشم
  2. سردرد و سرگیجه
  3. حالت تهوع
  4. تند شدن دستگاه تنفسی
  5. تغییر رنگ پوست
  6. تحریکات عصبی
  7. احساس درد در بینی ، گلو و سینه و سرفه
  8. سست شدن بدن و بی هوشی
  9. التهاب

کمک های اولیه :

در صورت مصدومیت با H2S به صورت زیر اقدام کنید:

امدادرسان بایستی خود از تجهیزات حفاظتی استفاده کند تا مسموم نشود.

 

  1. مصدوم را فوری از محیط آلوده دور کنید و به محیط مطمئن با اکسیزن کافی منتقل نمایید.
  2. وخامت حال مصدوم را فوری بررسی کنید.
  3. مصدوم را گرم نگه دارید
  4. کمک های اولیه پزشکی را شروع کنید
  5. پزشک مسوول را از مصدوم مطلع کنید

 

نکات ایمنی مهم در برخورد با H2S

•          هرگز خونسردی خود را از دست ندهید

•          جهت باد را همیشه مورد نظر بگیرید

•          هرگز زیر بادی که از محیط آلوده می آید توقف نکنید (فوری به منطقه مخالف بروید)

•          با احتیاط زیاد وارد محوطه کار و محیط های آلوده شوید

•          همواره فعالیت و موقعیت و محل کارکنان را زیر نظر داشته باشید

•          راههای خروجی اضطراری را بشناسید و از مسدود نبودن آنها اطمینان حاصل کنید

•          شعله آتش در محوطه نباید وجود داشته باشد

•          هوای محوطه های الوده را مرتب عوض کنید

•          تعداد کارکنان جایی که خطر H2Sوجود دارد باید حداقل باشد

•          یک تیم نجات باید همیشه در محل آماده باشد

•          از وسایل تجهیزات فردی استفاده کنید

•          هرگز برای کمک به فردی که در خطر است بدون وسایل و تجهیزات حفاظتی (ماسک هوا و غیره ) اقدام نکنید  

مرجع

هیدروژن و فواید آن

هیدروژن و فواید آن

هیدروژن ساده ترین عنصر شناخته شده برای انسان است؛ هر اتم هیدروژن تنها یک پروتون و یک نوترون دارد. هیدروژن فراوانترین گاز هستی است. ستاره ها در ابتدا از هیدروژن ساخته شده بودند. انرژی خورشید از هیدروژن به دست می آید. هیدروژن توپ عظیمی از گازهای هیدروژن و هلیوم است. درون خورشید، اتمهای هیدروژن ترکیب می شود و اتمهای هلیوم را پدید می آورد. این پدیده گدازه « Pusiun » انرژی پرتوهای خورشید را تولید می کند.
انرژی پرتوی خورشید باعث برقراری حیات روی زمین است. این انرژی به ما نور می دهد، باعث رشد گیاهان می شود، بادها را به جریان می اندازد، باعث بارش باران می شود. این انرژی در سوختهای فسیلی ذخیره شده است. بیشتر انرژی مصرفی ما در حال حاضر از خورشید منشأ می گیرد.


هیدروزن گازی (H2) روی زمین وجود ندارد. این عنصر همیشه به صورت ترکیبی است. به طور مثال، ترکیب با اکسیژن (H2O - آب) ترکیب هیدروژن با کربن ترکیبات شیمیایی متفاوتی مانند متان (CH4) و زغال و نفت را به دست می دهد . همچنین، هیدروژن در تراکم زیست و مواد عالی یافت می شود. هیدروژن از نظر امروزی بیشترین محتوای انرژی هر سوخت را دارد؛ اما از نظر حجمی، کمترین فشار عادی به صورت گاز وجود دارد. هیدروژن می تواند انرژی را ذخیره کند. بیشتر انرژی که ما امروزه مصرف می کنیم از سوختهای فسیلی به دست می آید. تنها 6% منابع انرژی از منابع تجدیدپذیرند؛ زیرا این انرژیها تمیزتر و مناسب استفاده تر در طول یک زمان کوتاه اند.
منابع انرژی تجدیدپذیر مانند خورشید و باد نمی توانند همه وقت انرژی تولید کند. خورشید همیشه نمی تابد و باد همیشه نمی وزد. منابع تجدیدپذیر در زمان و مکانی که ما نیاز داریم انرژی تولید نمی کند. ما نمی توانیم منابع انرژی زیادی برای تولید هیدروژن استفاده کنیم؛ هیدروژن می تواند انرژی را در زمان و مکانی که ما نیاز داریم تأمین کنید.


هیدروژن انتقال دهنده انرژی:
هر روز ما انرژی برقی بیشتری مصرف می کنیم. برق منبع ثانویه انرژی است؛ منابع ثانویه انرژی که گاهی به آنها ناقلهای انرژی هم گفته می شود انرژی را به مصرف کننده می رساند. از آنجا که استفاده و انتقال برق برای ما آسانتر است، ما انرژیها را به انرژی برق تبدیل می کنیم. برق به ما نور، گرما، آب داغ، غذای سرد، تلویزیون، رایانه می دهد. زندگی بسیار سخت می شد، اگر ما مجبور بودیم زغال بسوزانیم، اتم بشکافیم، یا سدهای خود رابسازیم؛ پس انرژی زندگی را ساده تر کرده است.


هیدروژن ناقل انرژی برای آینده است. این عنصر سوخت تمیزی است که می توان آن را در جاهایی جایگزین کرد که ما بسختی از برق استفاده می کنیم. فرستادن برق در مسیرهایی طولانی 4 برابر بیشتر از حمل دریایی هیدروژن به صورت خطوط لوله ای هزینه دارد.


هیدروژن چطور ساخته می شود؟
از آنجا که هیدروژن گازی در زمین وجود ندارد، ما باید آن را بسازیم. با جدا کردن هیدروژن از آب، تراکم زیست یا گاز طبیعی از منابع محلی هیدروژن می سازیم. دانشمندان حتی کشف کرده اند که بعضی جلبکها و باکتریها هیدروژن تولید می کنند. تولید هیدروژن در حال حاضر بسیار گران است؛ اما فنون جدیدی برای این کار در حال توسعه است. هیدروژن را می توان برای خدمات رفاهی مرکزی بزرگ یا دستگاههای کوچک با کاربرد محلی تولید کرد. از این رو، انعطاف پذیری هیدروژن یکی از امتیازات عمده آن است .


کاربردهای هیدروژن:
هیدروژن در صنعت به مصرف پالایش و پرداخت فلزات و فراوری غذاها می رسد.NASA اولین کاربر هیدروژن به عنوان ناقل انرژی است که هیدروژن را برای سالها در برنامه فضایی مورد استفاده قرار داد. تنها محصول فرعی در چنین فرایندهایی آب است که خدمه موشک از آن برای نوشیدن استفاده می کند. سلولهای سوختی هیدروژن یا باتریهای هیدروژنی برق تولید می کند. آنها کارایی بسیاری دارند، اما ساخت آنها گران است. سلولهای سوختی کوچک می توانند برق مناطق دوردست را تأمین کند.


هیدروژن به عنوان سوخت:
دستگاههای نیروی هیدروژنی برای مدتی ساخته نخواهند شد؛ زیرا هزینه زیادی به همراه دارد. هیدروژن ممکن است بزودی به گاز طبیعی اضافه شود تا از آلودگی دستگاههای موجود بکاهد. هیدروژن بزودی به گازوئیل اضافه خواهد شد تا آلودگی را کاهش دهد و کارایی را زیاد کند. اضافه کردن تنها 5% هیدروژن به گازوئیل ممکن است به میزان درخور توجهی اکسید نیتروژن را (که در آلودگی لایه اوزن بسیار مؤثر است) کاهش دهد.
موتوری که هیدروژن خالص می سوزاند تقریباً هیچ آلودگی ندارد. شاید حدود 10 تا 20 سال به استفاده از خودرو شخصی مصرف کننده هیدروژن باقی مانده است.

 

آینده هیدروژن:
قبل از اینکه هیدروژن به عنوان سوختی مهم شناخته شود، باید سامانه های جدید زیادی ساخت. ما به سامانه هایی نیاز خواهیم داشت که هیدروژن بسازند ذخیره کنند و انتقال دهند. ما به خطوط لوله و سلول سوختی اقتصادی نیاز خواهیم داشت و مصرف کنندگان به فناوری و آموزش استفاده از آن نیاز خواهند داشت.

وجود H2S در نفت و راههای زدودن آن

وجود H2S در نفت و راههای زدودن آن. 

 

لینک

پدیده ی فوتوالکتریک

پدیده ی فوتوالکتریک

در سال ١٢٦٨ هجری خورشیدی (١٨٨٧ م) هانریش هرتز دانشمند آلمانی در حین انجام آزمایش متوجّه شد که تاباندن نور با طول موج‌های کوتاه مانند امواج فرابنفش به کلاهک فلزی الکتروسکوپ با بار منفی باعث تخلیه الکتروسکوپ می‌شود وی با انجام آزمایش‌های بعدی نشان داد که تخلیه الکتروسکوپ بخاطر جدا شدن الکترون از سطح کلاهک فلزی آن است.
برای بررسی بیشتر پدیده فوتوالکتریک می‌توان دستگاهی مطابق شکل زیر تهیه کرد و دست به آزمایش زد. این دستگاه شامل دو الکترود و است که داخل یک محفظه خلاء قرار دارند. این دو الکترود به یک منبع ولتاژ قابل تنظیم در خارج محفظه وصل شده اند.

اگر بین این دو الکترود، اختلاف پتانسیل برقرار شود، هیچ جریانی در مدار برقرار نمی‌شود؛ حتی اگر ولتاژ خیلی بالا باشد؛ ولی اگر نور تکفام با بسامد مناسب بر الکترود بتابانیم، جریان در مدار برقرار می‌شود و افزایش ولتاژ باعث افزایش شدت جریان در مدار خواهد شد. این موضوع نشان می‌دهد که نور تابیده شده روی الکترود باعث کنده شدن الکترون از آن شده است و ولتاژ ما بین دو الکترود نیز (با ایجاد میدان الکتریکی)، الکترون‌های آزاد شده را از کنار الکترود به الکترود می‌رساند و اینچنین جریان درمدار برقرار می‌شود.

شکل اوربیتال ها

نام اوربیتال

شکل اوربیتال

نام اوربیتال

شکل اوربیتال

1s

 

3py

2s

3pz

 

3s

 

3dxy

 

2px

3dxz

 

2py

 

 

3dyz

 

2pz

 

3dz2

3px

 

3dx2-y2

 

منبع: وبلاگ کیمیا گر

پلیمر اسفنجی

نگاه کلی

اسفنجها مواد متخلخلی هستند که حبابهای گاز در حفره‌های آنها حبس شده است. اسفنجها انواع گوناگونی دارند و با توجه به نرمی یا سختی کاربرهای مختلفی دارند. از اسفنجهای نرم در تهیه بالش و تشک و … استفاده می‌شود و اسفنجهای سخت و با چگالی گوناگون مصارف گوناگونی در تهیه وسایل خانگی و صنعتی دارند. امروزه ، گونه‌های زیادی از اسفنجها شناخته شده و تولید و مصرف می‌شوند. پلی‌اورتانها و پلی‌استایرن از عمده‌ترین و پُرمصرف‌ترین اسفنجها می‌باشند.

انواع اسفنج

اسفنجها با توجه به ساختار سلولی به دو گونه نرم و سخت تقسیم می‌شوند. اسفنجهای سخت ، سیستمهای بسته سلولی و متخلخل هستند و اسفنجهای نرم سیستمهای باز می‌‌باشند. برای اینکه اسفنجی انعطاف‌پذیر باشد، باید دارای سلولهای باز باشد تا هنگام فشردگی هوای داخل آنها خارج شود.

تشکیل اسفنج

رزینهای پلاستیکی را می‌توان با روشهای زیر بصورت اسفنج در آورد:

  • فرآورده‌های جنبی گازی‌ که طی واکنش پلیمریزاسیون تشکیل می‌شوند.
  • تبخیر یک مایع که دارای نقطه جوش پایین باشد.
  • واکنش شیمیایی یک عامل پُف‌کننده ثانوی که بوسیله حرارت فعال می‌شود.


<><>تصویر

رسانایی گرمایی اسفنجها

رسانایی گرمایی در اسفنجهای با چگالی کم ، اندکی بیشتر از رسانایی گاز حبس شده در سلولهای آنهاست. هرچه وزن مولکولی گاز بیشتر باشد، رسانایی گرمایی کمتر می‌گردد. گازهایی که رسانایی گرمایی کمتری دارند، در تهیه اسفنجهای نارسانا بکار می‌روند. ممکن است در اثر مرور زمان ، گاز اسفنج از آن خارج شده و گازهای دیگر مثل هوا یا بخار آب در آن وارد شود.

فرئونها ( گازهای فلوئوروکربن ) معمولا در سلولهای پلی اورتان ماندگارترند، اما هوا و آب هم ممکن است وارد سلولها شوند و رسانایی گرمایی اسفنج را حدود 20 تا 40 درصد افزایش دهند.

<><>
جدول : برخی گازهای مورد استفاده در تهیه اسفنجها
گازفرمول شیمیاییجرم مولکولینقطه جوشرسانایی گرمایی
هیدروژن H22- 253 4.28
نیتروژنN2 28-1960.62
اکسیژنO232-1830.62
بخار آبH2O181000.43
دی‌اکسید کربنCO244-780.40
پنتانC5H1272360.34
فلوئوروکربن12CCl2F2121-300.23
فلوئوروکربن11CCl3F127240.18

نمونه اسفنجهای کاربردی

<><>
جدول نمونه‌ای از اسفنجهایی که امروزه به صورت گسترده مورد استفاده قرار می‌گیرند
اسفنجنوعسلولگستره چگالیKg/M3حداکثر دمای کار بر درجه سانتی‌گراد
گرما سختها
پلی اورتانسختبسته24 – 640 +93 – 121
پلی اورتانانعطاف پذیرباز14.5 – 320 66 – 93
پلی ایزو سیانوراتسختبسته24 – 320 + 149+
فنولیسختباز یا بسته5.1 – 352 149+
اوره فرمالدئیدنیمه سختکمی بسته 13 – 1949
پلی آمید سختباز یا بسته32 – 640260
گرمانرم
پلی استیرنسختبسته16 – 16079
پلی اتیلننیمه سختبسته21 – 80082
پلی وینیل کلریدسختبسته32 – 6493
پلی وینیل کلریدانعطاف پذیرباز یا بسته46 – 96062 – 107
نایلونسختبسته640 – 960149

  • اسفنجهای گرماسخت : پلیمرهایی که در اثر گرما به پلیمرهای غیر قابل ذوب و انحلال ناپذیر تبدیل می‌شوند.
  • اسفنجها گرمانرم : پلیمرهایی که در اثر گرما می توانند ذوب یا نرم شوند.

فرآورده های نفتی

فرآورده های نفتی

 

بشر از آغاز خلقت بدنبال چیزی بوده است که بتواند از آن حرارت، روشنایی و نیروی لازم برای گرداندن چرخ زندگی خود را فراهم نماید. برای تامین حرارت نخست شاخ و برگ درختان و زغال چوب را که در دسترس داشت، بکار می‌برد. روشنایی لازم را نیز با مشعل‌های چوبی یا چراغهای پیه سوز و رفته رفته با چراغهایی که با روغنهای گیاهی و روغنهای معدنی می‌سوخت، تامین می‌کرد.....

 

 

 


 

زغال سنگ منبع انرژی

بشر کم کم زغال سنگ را کشف نمود. کشف زغال سنگ زندگی بشر را دچار تحولی بزرگ کرد و باعث پیدایش و رشد سریع صنایع گردید. تا اوایل قرن بیستم منبع اصلی انرژی ، زغال سنگ بود. اما بعدها ، انسان دریافت که نفت را که از دیر باز می‌شناخت، و لیکن به مصارف محدود و دیگر می‌رسانید، برای تولید حرارت و انرژی به مراتب از سوختهای جامد بهتر است. از این رو شروع به استخراج نفت از زمین نمود.

 

 

نفت اصلی ترین منبع انرژی

امروزه نفت از سایر منابع انرژی و حرارت ، پیشی جسته و مقام نخست را دار است و پیوسته دامنه مصرف آن گسترش می‌یابد. همچنانکه انسان در زندگی پیش می‌رود، احتیاجش به منابع انرژی بیشتر می‌گردد و جوابگوی این تقاضای روز افزون فقط نفت است. وگرنه زغال سنگ و منابع دیگر نیرو نمی‌توانند تکافوی احتیاجات امروزی بشر را بنماید. حتی اگر در سالهای آینده از انرژی هسته‌ای استفاده بعمل آید، باز نفت همچنان سهم و مقام برجسته در تولید نیرو به عهده خواهد داشت.

سوخت مایع و گازی بهتر از سوخت جامد است. به همین سبب بشر برای تهیه سوختهای لازم برای زندگی صنعتی خود ، به نفت روی آورده است.

 

 

سوختهای نفتی

تعداد سوختهای نفتی نیز فوق العاده زیاد است. مثلا در پالایشگاه آبادان ، صرفنظر از محصولات دیگر سوختهای گوناگون فراوانی از بنزین هواپیما گرفته تا قیر تهیه می‌شود. ذکر همه این مواد و موارد مصرف آنها امکانپذیر نیست. بنابراین چند مورد مهم و آشنای آن را مثل گاز ، بنزین ، نفت سفید ، نفت دیزل ، روغن و قیر ذکر می کنیم.

 

 

گاز

گاز نفت بطور طبیعی همراه نفت خام از زمین بیرون می‌آید و یا بر اثر پالایش و تجزیه اجزای نفت حاصل می‌گردد. گاز نفت انواع گوناگون دارد. برخی از آنها در فشار و دمای عادی گازی شکل هستند. به همین سبب آنها را اصطلاحا گاز خشک می‌گویند. بعضی نیز در این شرایط مایع هستند لذا اصطلاحا آنها را گاز تر می‌نامند. گازهای تر مقدار زیادی بنزین سبک و گرانبها همراه دارند که در موقع پالایش آنها را جدا می‌سازیم. اما گاز خشک یک سوخت حاضر و آماده است.

 

 

بنزین

بنزین یکی ازفرآورده‌های سبک نفت است که یا بطور طبیعی با گازهای تر همراه است و یا بر اثر پالایش نفت خام حاصل می‌گردد. در اوایل پیدایش صنعت نفت که هدف پالایشگران فقط تهیه نفت چراغ بود، بنزین مورد مصرفی نداشت. حتی ماده‌ای زائد و خطرناک بشمار می‌رفت. لذا سعی می‌شد که در موقع پالایش حتی المقدور کمتر ، از آن بوجود آید تا آز آسیب آن در امان باشند. اما با اختراع موتورهای احتراقی درونسوز این وضع دگرگون شد و مصرف بنزین آنچنان گسترش یافت که برای تهیه آن ناگزیر شیوه‌ها و دستگاههای پالایش جدیدی پدید آمد. پالایشگران ناگزیر شدند ملکولهای ترکیبات نفتی را شکسته و تغییراتی در آن دهند تا بنزین بوجود آید.

 

 

نفت سفید

نفت سفید مایعی بیرنگ و کمی سنگین تر از بنزین است. نفت سفید از آغاز پیدایش صنعت نفت تا ۵۰ سال ، مهمترین فرآورده نفتی بود. نخست بعنوان روغن چراغ بکار می‌رفت و هنوز هم در مواردی برای تولید روشنائی بکار می‌رود. امروزه بیشتر بعنوان منبع تولید نیرو و در برخی توربینهای هواپیما و موتور تراکتورهای مخصوص بکار می‌رود.

 

 

سوخت دیزل

نفت دیزل چنانکه از نامش پیداست، بعنوان سوخت در موتورهای دیزلی یعنی موتورهای فشار سوز به مصرف می‌رسد. مقدار گوگرد موجود در این نوع نفت بیش از میزان موجود در نفت سفید است.

 

 

روغنهای روان

یکی دیگر از محصولات نفتی ، روغن روان است که بیشتر برای روان نگهداشتن اجزای ماشین آلات به مصرف می‌رسد. میزان روغنهای حاصل از نفت کمتر از ۲ در صد کلیه فرآورده‌های دیگر است. لذا همین میزان روغن نقشی بر جسته و مهم در صنایع و زندگی امروزی ایفا می‌کند. زیرا از قیچی و چرخ خیاطی گرفته تا جرثقیلهای عظیم و ماشین آلات غول پیکر همه برای خوب کار کردن باید روغن مصرف کنند. روغن برای اجزا متحرک ماشین آلات بکار رفته و از اصطکاک و فرسوده شدن آنها جلوگیری می‌کند.

 

 

قیر

قیر هیدروکربنی است که معمولا از تقطیر و پالایش نفت خام معینی ته ظرف پالایش بدست می‌آید. وزن مخصوص آن ۱ الی ۱.۳ و نقطه ذوب آن (۱۴۰ - ۱۱۰) درجه سانتیگراد می‌باشد. این ماده بطور طبیعی نیز در برخی از نقاط کره زمین یافت می‌شود. قیر طبیعی بر اثر تراوش نفت خام از روزنه و شکافهای سطح زمین به خارخ و بخار شدن اجزای سبک نفت پدید می‌آید. همین قیر بود که از دیرباز ، مخصوصا در ایران و بین النهرین بعنوان ملاط در ساختمانها و استخرها و یا گازهای دیگر به مصرف می‌رسید.

 

 

قیر حاصل تقطیر ، ماده‌ای است سیاه رنگ یا قهوه‌ای سیر که برحسب مقدار اجزای سبکی که در موقع پالایش از نفت خام گرفته می‌شود، ممکن است خیلی سفت یا به درجات مختلف نرم باشد. قیر بر اثر حرارات نرم و آب می‌شود. اما اگر با اکسیژن ترکیب شده باشد بصورت نوعی لاستیک در می‌آید که در آنصورت مثل قیرهای دیگر چندان در مقابل گرما یا در مقابل سرما سفت نمی‌شود.

 

 

قطران طبیعی

گروهی از نفت‌های خام دارای گوگرد زیاد ، ویسکوزیته بیشتر و تراکم را قطران طبیعی گویند، که در بعضی مناطق استثنائا آنها را نیز استخراج می‌کنند. قطران در عمق کم زمین و در داخل ماسه‌ها ی نفت دار که به آنها ماسه‌های قطران (Tar SandS) گویند، یافت می‌شود. این قطران‌ها راهنمای خوبی برای پیدا شدن نفت خام محسوب می‌شوند.

 

موم طبیعی

موم طبیعی بطور کلی از پارافین تشکیل می‌شود و می‌تواند درون لوله‌های حامل نفت نیز از متن تفکیک حاصل می‌کند. این ماده به حالت خمیر یا شکننده و برنگ زرد مایل به قهوه‌ای می‌باشد که دارای وزن مخصوص ۰/۸۴ الی ۰/۹۳ می‌باشد. نقطه ذوب موم طبیعی ۸۵ الی ۱۰۰ بوده و در داخل بنزین ، روغن و محلولهای بیتومینی حل می‌شود.

کتاب مفید در زمینه شیمی نفت

کتاب مفید در زمینه شیمی نفت 

 

لینک

مهاجرت نفت

شواهدی دایر بر انتقال نفت به محلی که در آن تجمع یافته وجود دارد. به عبارت دیگر نفت و گاز متمرکز در مخزن ، از سنگی دیگر منشا گرفته و به محلی مناسب جهت ذخیره مهاجرت می‌کند. از نظر مقایسه سنگ مخزن دارای فضاها و نافذ قابل ملاحظه و به هم مرتبط بود. ولی منافذ سنگ منشا بسیار ریز و یا قابل چشم پوشی می‌باشد. حرکت سیال ، از سنگ منشا به سمت لایه و معابر توسط و همچنین در درون مخزن ، مهاجرت نامیده شود. تداوم مهاجرت هیدروکربور سبب تجمع آن شده که در نهایت منجر به تشکیل مخزن نفت می شود.

علائم و شواهد مهاجرت هیدروکربورها
مواد آلی موجود در منافذ مرتبط سنگهای سطحی زمین ، اکسید شده و فاسد می‌شود. بنابراین ، لازمه حفظ مواد نفتی در مخزن به دنبال افزایش عمق و ازدیاد دمای مخزن می‌باشد.
بخش بسیار کوچکی از مواد ارگانیکی سنگهای منشا به نفت و گاز تبدیل می‌شود. مقدار نفت به صورت جازا بسیار ناچیز است. به همین دلیل تشکیل مخزن دارای ذخیره قابل ملاحظه هیدروکربور در سنگ منشا غیر ممکن به نظر می رسد.
نفت و گاز بطور کلی همراه آب در منافذ سنگ مخزن تجمع می‌یابد. به همین دلیل ، وجود نفت و گاز در منافذ و شکستگیها همزمان با دفن شدگی مخزن در صورت گرفته است.
نفت و گاز در بالاترین نقطه مخزن تجمع و تمرکز یافته که خود تاثیری بر حرکت نفت به سمت بالا و یا در جهات عرضی می‌باشد.
نفت و گاز و آب بر اساس وزن مخصوص نسبت به یکدیگر در مخزن قرار می‌گیرد. نحوه قرار گرفتن گاز ، نفت و آب حاکی از حرکت آنها در داخل مخزن است.

مهاجرت اولیه نفت
منظور از مهاجرت اولیه ، جز بیش مواد هیدر و کربنی از سنگ منشا بصورت محلول در آب ، ملکول آزاد ، جذب در مواد ارگانیکی یا غیر ارگانیکی و یا تلفیقی از آنها می‌باشد. هیدروکربورها ضمن انتقال اولیه بایستی از سنگ منشا ، آزاد شده تا بتوانند حرکت کنند. به هرحال ، جدایش مواد ارگانیکی قابل حل از سنگ منشا ، مکانیسم اصلی انتقال اولیه را بوجود می‌آورد. مقدار از این تولید در واحد حجم بسیار کم است. دما و فشار با ازدیاد عمق و دفن سنگها افزایش پیدا می‌کند.
این عمل سبب کاهش مقدار غلظت سنگهای قابل انعطاف شده و به نحوی که در نهایت منجر به خروج مقدار زیادی از مایع درون خلل سنگ می‌شود. سنگهای دانه ریز مانند رسها بیشترین فشار را متحمل می‌شود. مایع محتوی این سنگهای تحت فشار به طرف بالا صعود می‌کند. به همین دلیل افزایش فشار می‌توانند سر آغاز حرکت صعودی سیالات محسوب شود. مطالعه‌ای که بر قابلیت انحلال پذیری هیدروکربورها در آب سازند صورت گرفته حاکی از کاهش قابلیت انحلال قابلیت انحلال هیدروکربورها ضمن افزایش اندازه ملکولی آن می‌باشد. افزایش دما قابلیت حل هیدروکربور در آب را افزایش می‌دهد.
قابلیت انحلال هیدروکربورهای سنگینتر با کاهش دما کم می‌شود. بنابراین هیدروکربورها بر اثر کاهش دما به تدریج از محلول اشباع شده خارج می‌شود. این رهایی در هر سنگی که دمایی کمتر از دمای قبلی خود داشته باشد می‌تواند صورت گیرد. نتیجه آزاد شدن هیدروکربور ، راه یابی آن به مسیر اصلی جریان است. آزاد سازی نفت ، ناشی در کاهش دما ، در هر حال ، تنها مقدار کمی نفت از سنگهای ضخیم لایه ، می‌تواند از آب عبور جدا شود.

ادامه مطلب ...

رزین های مبادله کننده یون

پدیده تبادل یون برای اولین بار در سال 1850 و به دنبال مشاهده توانایی خاک‌های زراعی در تعویض برخی از یون‌ها مثل آمونیوم با یون کلسیم و منیزم موجود در ساختمان آنها گزارش شد. در سال 1870 با انجام آزمایش‌های متعددی ثابت شد که بعضی از کانیهای طبیعی بخصوص زئولیت‌ها واجد توانایی انجام تبادل یون هستند. در واقع به رزین‌های معدنی ، زئولیت می‌گویند و این مواد یون‌های سختی آور آب (کلسیم و منیزیم) را حذف می‌کردند و به جای آن یون سدیم آزاد می‌کردند از اینرو به زئولیت‌های سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیاد داشت چون احتیاج به مواد شیمیایی نبود و اثرات جانبی هم نداشتند.

 

اما زئولیت‌های سدیمی دارای محدودیتهایی بودند. این زئولیتها می‌توانستند فقط سدیم را جایگزین کلسیم و منیزیم محلول در آب نمایند و آنیونهایی از قبیل سولفات ، کلراید و سیلیکات‌ها بدون تغییر باقی می‌مانند. واضح است چنین آبی برای صنایع مطلوب نیست. پس از انجام تحقیقات در اواسط دهه 1930 در هلند زئولیتهایی ساخته شد که به جای سدیم فعال ، هیدروژن فعال داشتند. این زئولیتها که به تعویض کننده‌های کاتیونی هیدروژنی معروف جدید ، سیلیس نداشته و علاوه بر این قادرند همزامان هم سختی آب را حذف کنند و هم قلیائیست آب را کاهش دهند.

 

برای بهبود تکنولوژی تصفیه آب ، گامهای اساسی در سال 1944 برداشته شد که باعث تولید زرین‌های تعویض آنیونی شد. زرین‌های کاتیونی هیدروژنی تمام کاتیونی آب را حذف می‌کنند و رزین‌های آنیونی تمام آنیونهای آب را از جمله سیلیس را حذف می‌نمایند ، در نتیجه می‌توان با استفاده از هر دو نوع زرین ، آب بدون یون تولید کرد. همچنین پژوهشگران دریافتند که سیلیکات آلومینیم موجود در خاک قادر به تعویض یونی می‌باشد. این نتیجه گیری با تهیه ژل سیلیکات آلومینیم از ترکیب محلول سولفات آلومینیم و سیلیکات سدیم به اثبات رسید. بنابراین اولین رزین مصنوعی که ساخته شد سیلیکات آلومینیم بود. و امروزه اکثر زرین‌های تعویض یونی که در تصفیه آب بکار می‌روند رزین‌های سنتزی هستند که با پلیمریزاسیون ترکیبات آلی حاصل شده‌اند.


شیمی رزین‌ها


رزین‌های موازنه کننده یون ، ذرات جامدی هستند که می‌توانند یونهای نامطلوب در محلول را با همان مقدار اکی والان از یون مطلوب با بار الکتریکی مشابه جایگزین کنند. رزین‌های تعویض یونی شامل بار مثبت کاتیونی و بار منفی آنیونی می‌باشد بگونه‌ای که از نظر الکتریکی خنثی هستند. موازنه کننده‌ها با محلول‌های الکترولیت این تفاوت را دارند که فقط یکی از دو یون ، متحرک و قابل تعویض است به عنوان مثال ، یک تعویض کننده کاتیونی سولفونیک دارای نقاط آنیونی غیر متحرکی است که شامل رادیکالهای آنیونی SO2-3 می‌باشد که کاتیون متحرکی مثل +H یا +Na به آن هستند.

 

این کاتیونهای متحرک می‌توانند در یک واکنش تعویض یونی شرکت کنند به همین صورت یک تعویض کننده آنیونی دارای نقاط کاتیونی غیر متحرکی است که آنیون‌های متحرکی مثل -Cl یا -OH به آن متصل می‌باشد. در اثر تعویض یون ، کاتیون‌ها یا آنیون‌های موجود در محلول با کاتیون‌ها و آنیون‌های موجود در رزین تعویض می‌شود ، بگونه‌ای که هم محلول و هم رزین از نظر الکتریکی خنثی باقی می‌ماند. در اینجا با تعادل جامد مایع سروکار داریم بدون آنکه جامد در محلول حل شود. برای آنکه یک تعویض کننده یونی جامد مفید باشد باید دارای شرایط زیر باشد:

 

1. خود دارای یون باشد.
2. در آب غیر محلول باشد.
3. فضای کافی در شبکه تعویض یونی داشته باشد ، بطوریکه یونها بتوانند به سهولت در شبکه جامد رزین وارد و یا از آن خارج شوند.


در مورد رزین‌های کاتیونی هر دانه رزین با آنیون غیر تحرک و یون متحرک +H را می‌توان همچون یک قطره اسید سولفوریک با غلظت 25% فرض نمود. این قطره در غشایی قرار دارد که فقط کاتیون می‌تواند از ان عبور نماید. شکل زیر تصویر یک دانه رزین و تصویر معادل یک قطره اسید سولفوریک 25% نشان می‌دهد.


طبقه بندی رزین‌ها رزین‌ها بر حسب گروه عامل تعویض متصل به پایه پلیمری رزین به چهار دسته تقسیم می‌شوند:

 

1. رزین‌های کاتیونی قوی SAC) Strongacidis Cation)
2. رزین‌های کاتیونی ضعیف WAC) Weak acidis Cation)
3. رزین‌های آنیونی قوی SBA) Strongbasic anion)
4. رزین‌های آمونیونی ضعیف WBA) Weak basic anion


بطور کلی رزین‌های نوع قوی در یک محدوده وسیع PH و رزین‌های نوع ضعیف در یک محدوده کوچک از PH مناسب هستند. ولیکن با استفاده از رزین‌های نوع ضعیف ، صرفه جویی قابل توجهی در مصرف مواد شیمیایی مورد نیاز برای احیا رزین را باعث می‌شود. رزین‌های کاتیونی قوی قادر به جذب کلیه کاتیونهای موجود در آب می‌باشد ولی نوع ضعیف قادر به جذب کاتیونهای هستند که به قلیائست آب مرتبط است و محصول سیستم اسید کربنیک است.


نوع قوی
Ca(HCO3)2 OR MgSO4 + 2ZSO3H -----> Ca2++2H2CO3 OR Mg2+ + H2SO4


نوع ضعیف
Mg(HCO3)2 OR Ca(HCO3)2 + 2ZCOOH -----> (ZCOO)2+ + Mg(ZCOO)2+Ca + 2H2CO3

 


مزیت رزین‌های کاتیونی ضعیف بازدهی بالای آنها در مقایسه با رزینهای کاتیونی قوی می‌باشد ، در نتیجه باعث تولید پساب کمتر در احیا مکرر می‌گردد. اصولا زمانی که هدف جداسازی کلیه کاتیونهای آب است بکارگیری توام رزین کاتیونی قوی و ضعیف اقتصادی تر از بکارگیری رزینهای کاتیونی قوی می‌باشد. رزین‌های آنیونی قوی قادر به جذب کلیه آنیونهای موجود در آب بوده ولی رزین‌های آنیونی قادر به جذب آنیون اسیدهای قوی نظیر اسید سولفوریک ، کلریدریک و نیتریک می‌باشد. رزین‌های آنیونی ضعیف مقاومتر از رزینهای آنیونی قوی بوده و به همین جهت در سیستم‌های تصفیه آب ، رزین‌های آنیونی قوی در پاین دست رزینهای آنیونی ضعیف قرار می‌گیرند.

 

2HCl OR 2H2SiO3 + 2ZOH -----> 2ZHSio3ZCl + H2O

2HCl OR 2HNO3 + ZOH -----> 2ZCl OR 2ZNO3 + H2O

 

برخی از کاربردهای رزین‌ها


• رزین‌های کاتیونی سدیمی نه تنها کاتیون‌های سختی آور آب بلکه همه یون‌های فلزی را با سدیم تعویض می‌کنند. برای احیا این نوع رزین‌های کافی است که رزین را با آب نمک شست و شو دهیم تا رزین به فرم اولیه خود برگردد.
• با رزین‌های کاتیونی چه نوع هیدروژنی و چه نوع سدیمی می‌توان آهن و منگنز را چون بقیه کاتیونها حذف کرد اما به علت امکان آلوده شدن رزین‌ها معمولا مشکلاتی داشته و باید نکاتی را رعایت کرد. اولا باید دقت کرد که قبل از حذف یون آهن توسط رزین هیچ هوایی با آب در تماس قرار نگیرد چون در اثر مجاورت با هوا ، آهن و منگنز محلول در اب اکسیده شده غیر محلول در می‌آیند و در نتیجه روی ذرات رزین رسوب کرده و باعث آلوده شدن رزین می‌گردد.
• با استفاده از رزین‌های تبادل یونی می‌توان لیزین را که جز اسید آمینه ضروری مورد نیاز رژیم غذایی خوکها ، ماکیان و سایر گونه‌های حیوانی می‌باشد ، را تخلیص کرد. دلیل اهمیت تخلیص این اسید آمینه ، نزدیکتر شدن رژیم غذایی حیوانات به نیازمندیهای آنها در مصرف مواد خام و ... است با توجه به اینکه مقدار لیزین در دانه‌ها ، بخصوص غلات ناچیز می‌باشد.
• حذف سیلیکا از آبهای صنعتی با استفاده از رزین‌های آنیونی قوی
• حذف آمونیاک از هوا بوسیله زئولیت‌های طبیعی اصلاح شده (کلینوتپلولیت)

اکسنده های مایع و جامد چه هستند؟

لوزی خطر برای آمونیوم پرکلرات 

قرمز=0  آبی=1   زرد=2  سفید=ox 

 

 

اکسنده ها مواد جامد یا مایعی هستند که آماده دریافت اکسیژن خالص یا دیگر مواد اکسنده مانند بروم ، کلر

یا فلوئور می باشند. آنها همچنین شامل موادی هستند که با اکسنده های قابل اشتعال ( سوختنی ) واکنش 

شیمیایی می دهند . بدین معنا که اکسیژن با دیگر مواد تشکیل ترکیب شیمیایی داده و در نتیجه شانس ایجاد

یک حریق یا انفجاررا افزایش می دهد . این واکنش ممکن است به طور خودبخود دردمای اتاق یا گرمای

کم اتفاق بیفتد . مایعات و جامدات اکسید کننده می توانند حریق شدید و انفجار خطرناک را ایجاد نمایند

ادامه مطلب ...

پوشش های پودری

پوشش های پودری شامل رنگدانه ها و افزودنی های پخش شده در یک بایندر تشکیل دهنده فیلم ( رزین و عامل پخت) می باشند که بصورت پودرهای ریز تولید می شوند . چنین پودرهایی با یک تفنگ الکترواستاتیک بر روی سطوح مورد نظر پاشش می‌گردند. ذرات پودر در تفنگ باردار شده و لایه نازک چسبناکی را روی سطح مورد نظر تشکیل می‌دهند و پس از عبور از یک کوره در اثر حرارت ، ذرات پودری ذوب شده و پس از ایجاد چسبندگی و باند عرضی یک پوشش سخت ، بادوام و غیرقابل انحلال را ارائه می‌دهند. لغت پوشش پودری به هر دو پوشش پخت شده و حالت پودری اطلاق می‌شود و هیچ گونه ابهامی در بکار بردن آن وجود ندارد ولی ترم پودر پوششی فقط برای حالت پودری استفاده می‌شود .

 

» متن کامل (pdf)

نانوتکنولوژی چیست؟

نانوتکنولوژی چیست؟

نانوتکنولوژی تولید کارآمد مواد و دستگاهها و سیستمها با کنترل ماده در مقیاس طولی نانومتر، و بهره برداری از خواص و پدیده های نوظهوری است که در مقیاس نانو توسعه یافته اند. یک نانومتر چقدر است؟

یک نانومتر یک میلیاردم متر (9-m 10) است. این مقدار حدوداً چهار برابر قطر یک اتم است. مکعبی با ابعاد 5/2 نانومتر ممکن است حدود 1000 اتم را شامل شود. کوچکترین IC های امروزی با ابعادی در حدود 250 نانومتر در هر لایه به ارتفاع یک اتم، حدود یک میلیون اتم را در بردارند. در مقایسه یک جسم نانومتری با اندازه ای حدود 10 نانومتر، هزار برابر کوچکتر از قطر یک موی انسان است.

امکان مهندسی در مقیاس مولکولی برای اولین بار توسط ریچارد فاینمن (R.Feynnman)، برنده جایزه نوبل فیزیک، مطرح شد. فین من طی یک سخنرانی در انستیتو تکنولوژی کالیفرنیا در سال 1959 اشاره کرد که اصول و مبانی فیزیک امکان ساخت اتم به اتم چیز ها را رد نمی کند. وی اظهار داشت که می توان با استفاده از ماشین های کوچک ماشین هایی به مراتب کوچک تر ساخت و سپس این کاهش ابعاد را تا سطح خود اتم ادامه داد. همین عبارت های افسانه وار فاینمن من راهگشای یکی از جذاب ترین زمینه های نانو تکنولوژی یعنی ساخت روبوت هایی در مقیاس نانو شد. در واقع تصور در اختیار داشتن لشکری از نانوماشین هایی در ابعاد میکروب که هر کدام تحت فرمان یک پردازنده مرکزی هستند ، هر دانشمندی را به وجد می آورد. در رویای دانشمندانی مثل جی استورس هال (J.Storrs Hall) و اریک درکسلر (E.Drexler) این روبوت ها یا ماشین های مونتاژکن کوچک تحت فرمان پردازنده مرکزی به هر شکل دلخواهی درمی آیند. شاید در آینده ای نه چندان دور بتوانید به کمک اجرای برنامه ای در کامپیوتر، تختخوابتان را تبدیل به اتومبیل کنید و با آن به محل کارتان بروید.
چرا این مقیاس طول اینقدر مهم است؟

خواص موجی شکل (مکانیک کوآنتمی) الکترونهای داخل ماده و اثر متقابل اتمها با یکدیگر از جابجایی مواد در مقیاس نانومتر اثر می پذیرند. با تولید ساختارهایی در مقیاس نانومتر، امکان کنترل خواص ذاتی مواد ازجمله دمای ذوب، خواص مغناطیسی، ظرفیت بار و حتی رنگ مواد بدون تغییر در ترکیب شیمیایی بوجود می آید. استفاده از این پتانسیل به محصولات و تکنولوژیهای جدیدی با کارایی بالا منتهی می شود که پیش از این میسر نبود. نظام سیستماتیک ماده در مقیاس نانومتری، کلیدی برای سیستمهای بیولوژیکی است. نانوتکنولوژی به ما اجازه می دهد تا اجزاء و ترکیبات را داخل سلولها قرارداده و مواد جدیدی را با استفاده از روشهای جدید خود_اسمبلی بسازیم. در روش خود_اسمبلی به هیچ روبات یا ابزار دیگری برای سرهم کردن اجزاء نیازی نیست. این ترکیب پرقدرت علم مواد و بیوتکنولوژی به فرایندها و صنایع جدیدی منتهی خواهد شد.

ساختارهایی در مقیاس نانو مانند نانوذرات و نانولایه ها دارای نسبت سطح به حجم بالایی هستند که آنها را برای استفاده در مواد کامپوزیت، واکنشهای شیمیایی، تهیه دارو و ذخیرة انرژی ایده ال می سازد. سرامیک های نانوساختاری غالباً سخت تر و غیرشکننده تر از مشابه مقیاس میکرونی خود هستند. کاتالیزورهای مقیاس نانو راندمان واکنشهای شیمیایی و احتراق را افزایش داده و به میزان چشمگیری از مواد زائد و آلودگی آن کم می کنند. وسایل الکترونیکی جدید، مدارهای کوچکتر و سریعتر و … با مصرف خیلی کمتر می توانند با کنترل واکنش ها در نانوساختار بطور همزمان بدست آیند. اینها تنها اندکی از فواید و مزایای تهیه مواد در مقیاس نانومتر است.
منافع نانوتکنولوژی چیست؟

مفهوم جدید نانوتکنولوژی آنقدر گسترده و ناشناخته است که ممکن است روی علم و تکنولوژی در مسیرهای غیرقابل پیش بینی تأثیر بگذارد. محصولات موجود نانوتکنولوژی عبارتند از: لاستیکهای مقاوم در برابر سایش که از ترکیب ذرات خاک رس با پلیمرها بدست آمده اند، شیشه هایی که خودبخود تمیز میشوند, مواد دارویی که در مقیاس نانو ذرات درست شده اند، ذرات مغناطیسی باهوش برای پمپهای مکنده و روان سازها, هد دیسکهای لیزری و مغناطیسی که با کنترل دقیق ضخامت لایه ها از کیفیت بالاتری برخوردارند، چاپگرهای عالی با استفاده از نانو ذرات با بهترین خواص جوهر و رنگ دانه و …

قابلیتهای محتمل تکنیکی نانوتکنولوژی عبارتند از :

1- محصولات خوداسمبل
2- کامپیوترهایی با سرعت میلیاردها برابر کامپیوترهای امروزی
3- اختراعات بسیار جدید ( که امروزه ناممکن است)
4- سفرهای فضایی امن و مقرون به صرفه
5- نانوتکنولوژی پزشکی که درواقع باعث ختم تقریبی بیماریها، سالخوردگی و مرگ و میر خواهد شد.
6- دستیابی به تحصیلات عالی برای همه بچه‌های دنیا
7- احیاء و سازماندهی اراضی

ادامه مطلب ...

فلزات و افزودنی های موجود در مواد غذایی

برخی از فلزات موجود در مواد غذایی
سرب
سرب یکی از فلزات سنگین است که بطرق مختلف ، سبب آلودگی محیط و در نتیجه ایجاد عوارض مسمومیت حاد و یا مزمن در انسان می‌شود. تماس دراز مدت با این فلز سبب تجمع آن در بدن شده و یکی از مواد سرطانزا به حساب می‌آید. آلودگی مزارع و گیاهان به واسطه راه یابی فضولات کارخانجات که با ترکیبات سرب سروکار دارند، باعث افزایش میزان سرب در شیر و گوشت دامهائی که در مراتع چرا می‌کنند، شده و بطور مستقیم یا غیرمستقیم آلودگی غذای انسان را سبب می‌شود.
حداکثر میزان سرب برحسب استانداردهای موجود در کشورهای مختلف در آب آشامیدنی 50 میکروگرم در لیتر (ppb) و در مواد غذایی ، 2 میلیگرم در کیلوگرم (ppm) می‌باشد. همچنین لحیم قوطیهای کنسرو و در برخی موارد ، حاوی سرب است و نگاهداری غذا در این قوطی‌ها بخصوص در مورد اغذیه اسیدی سبب پیدایش سرب در ماده غذایی می‌شود.
 

مس مس یکی از عناصر لازم در تغذیه انسان و دام است و به مقادیر کم در تولید هموگلوبین خون موثر است. به مقدار زیاد در اغذیه ایجاد عوارض و مسمومیت می‌نماید. استاندارد مس در بیشتر کشورها ، 20ppm در اکثر مواد غذایی است و در نوشابه‌ها و آب میوه این مقدار 2ppm می‌باشد. وجود مس در شیر به عنوان کاتالیزور در تسریع اکسیداسیون چربی و تغییر طعم شیر موثر است و میزان 2ppm مس در شیر و یا کره ، مدت نگاهداری این مواد را کاهش می‌دهد. همچنین وجود مس در میوه‌ها و سبزی‌های قوطی شده ، میزان ویتامین C موجود را کاهش می‌دهد.
 

قلع مواد غذایی حاوی قلع در انسان ایجاد مسمومیت می‌نماید. گزارشهای متعددی مبنی بر مسمومیت افراد ناشی از مصرف آب‌میوه و یا مشروبات نگاهداری شده در قوطی ، در دست است. در صنایع غذایی ، قوطی‌های فلزی که به منظور نگاهداری اغذیه بکار می‌روند، اغلب بوسیله یک ورقه قلع پوشیده می‌شوند. اغذیه مختلف بخصوص اغذیه اسیدی و همچنین اغذیه گوگرددار مانند ماهی و گوشت در مدت نگاهداری با سطح فلز قوطی ایجاد واکنش نموده و قسمتی از فلز در آن حل می‌شود. حداکثر مجاز قلع در اغذیه در بیشتر کشورها 250ppm است.


افزودنیهای مواد غذایی
محافظها
نگهدارنده‌ها ، موادی شیمیایی هستند که با جلوگیری از رشد میکروارگانیسمها و اکسیداسیون مواد اکسید شونده و کنترل فعالیت آنزیمها ، فساد مواد غذایی را به تاخیر انداخته و مدت نگهداری آنها را طولانی می‌نمایند.
 

تثبیت‌کننده‌ها و استحکام دهنده‌ها شامل موادی مانند صمغ‌ها ، نشاسته و دکسترین و ژلاتین و بعضی ترکیبات پروتئینی و غیره می‌باشد که در اثر ترکیب آنها با آب مواد غذایی ، خاصیت چسبندگی به ماده غذایی داده و حالت ژله‌ای‌شکل تولید می‌کنند و در بیشتر پودینگها ، سسهای سالاد ، انواع ژله و غیره استفاده می‌شود.
 

مکملهای غذایی مکملهای غذایی ، موادی هستند که به عنوان تکمیل کننده و تقویت کننده به مواد غذایی اضافه می‌شوند. مثلا ویتامین D به شیر ، ویتامینهای گروه B به محصولات غلات ، ویتامین A یا بتاکاروتن به مارگارین و روغن‌های گیاهی ، ویتامین C به آبمیوه‌جات کنسرو شده و مصنوعی که از اسانس ، شکر و رنگ تهیه می‌شوند، افزوده می‌گردند.
 

امولسیون کننده‌ها امولسیون کننده‌ها موادی هستند که به عنوان استحکام دهنده و ایجاد امولسیون برای روغن در آب ، آب در روغن ، گاز در مایعات و گاز در جامدات بکار می‌روند که یا از امولسیون کننده‌های طبیعی مانند لیستین و یا از امولسیون کننده‌های مصنوعی مانند مونو یا دی گلیسریدها و اسیدهای چرب و مشتقات آنها استفاده می‌کنند.
 

بی رنگ و سفید کننده ، اصلاح کننده و تعدیل کننده نشاسته مواد اکسیدانی مانند پراکسید هیدروژن جهت سفید کردن شیری که جهت تهیه نوع خاصی از پنیر است، استفاده می‌شود. همچنین برای تغییر رنگ آرد تازه آسیاب شده و کیفیت عمل آوری نان ، از مواد اکسیداسیون استفاده می‌شود.
 

عوامل اسید کننده این عوامل موادی هستند که جهت پایین آوردن PH به مواد غذایی افزوده می‌شوند که ضمن اصلاح طعم ، بطور غیرمستقیم از رشد باکتری‌ها جلوگیری نموده و مدت زمان استریل محصولات کنسرو را کمتر می‌نمایند. همچنین باعث جلوگیری از شکرک زدن مرباجات در غلظتهای زیاد می‌گردند. این مواد عبارتند از: اسید سیتریک ، اسید استیک ، اسید مالیک و ... .

طعم دهنده‌ها
برای تغییر طعم و اصلاح طعم مواد غذایی از طعم دهنده‌های طبیعی مانند ادویه‌جات و اسانسهای طبیعی و یا از طعم دهنده‌های مصنوعی مانند اسانسها استفاده می‌شود. اسانسهای طبیعی را از میوه ، گل ، برگ و غیره گیاهان توسط تقطیر در خلاء بدست می‌آورند. بعضی از اسانسهای مصنوعی عبارتند از: بنزآلدئید با طعم گیلاس ، اتیل بوتیرات با طعم آناناس و متیل آنترانیلات با طعم انگور و ...
 

رنگها رنگها مواد رنگی مختلفی می‌باشند که به صورت طبیعی و یا مصنوعی تهیه شده و جهت خوش‌منظر کردن و یا متحدالشکل کردن و گاهی هم برای مخفی کردن و نامحسوس جلوه دادن عیوب و تقلب در فراورده‌های غذایی بکار می‌روند. 

مرجع