شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

بیوگاز، انرژی از یاد رفته

بیوگاز، انرژی از یاد رفته

امروزه گازهای گوناگون و مفیدی برای سوخت، وجود دارند که بیش از سه نوع آن در جهان استفاده می شود. این سه نوع عبارتند از: گاز مایع (ال.پی.جی) که مخلوطی از بخش‌های پالایش شده نفت خام از قبیل پروپان، بوتان، پروپیلن و بوتیلن است. این گاز به این دلیل که به آسانی به مایع تبدیل می شود، از آن برای سوخت سیلندر استفاده می شود. نوع دوم، گاز طبیعی است که از دو منبع عمده منابع گاز مستقل و گاز همراه (گاز حاصل از تفکیک نفت خام) تامین می شود و نوع سوم بیوگاز است که با آن بیشتر آشنا می شویم.

درسال های اخیر به دلیل مشکلات ناشی از وابستگی گسترده به نفت و محدودیت منابع تجاری انرژی، به استفاده از بیوگاز بیشتر توجه شده است. بیوگاز بر اثر واکنش های تجزیه ای بی هوازی میکروارگانیسم های زنده در محیطی که مواد آلی وجود دارد، تولید می شود. از این قبیل محیط ها می توان به باتلاق ها و مرداب ها اشاره کرد و گازی که در این محیط ها تولید می شود، به گاز مرداب معروف است. دلیل نام گذاری این گاز به بیوگاز این است که بر اثر تجزیه بی هوازی مواد آلی و بیولوژیک به وسیله میکروارگانیسم های زنده تولید می شود. بیوگاز مخلوطی از سه ترکیب به نام های متان، دی اکسید کربن و سولفید هیدروژن است. ترکیب عمده و قابل اشتعال بیوگاز، متان است که سهم بیشتر این گاز یعنی ۶۰ تا۷۰ درصد آن را شامل می شود. گاز متان، گازی است بی رنگ و بی بو که اگر یک فوت مکعب آن بسوزد، ۲۵۲ کیلوکالری انرژی حرارتی تولید می کندکه در قیاس با سایر مواد سوختی، رقم قابل توجهی است. دو ترکیب دیگر به ویژه سولفید هیدروژن که سهم آن ناچیز است، جزء ترکیب های سمی هستند. از مزیت های مهم متان به دیگر سوخت ها این است که هنگام سوختن، گاز سمی و خطرناک منواکسید کربن تولید نمی کند؛ بنابراین از آن می توان به عنوان سوخت ایمن و سالم در محیط خانه استفاده کرد. همان طور که گفته شد، ۶۰ تا۷۰ درصد بیوگاز را گاز متان تشکیل می دهد، این درصد بالای متان، بیوگاز را به عنوان منبع عالی و ممتاز انرژی های تجدیدپذیر برای جانشینی گاز طبیعی و دیگر سوخت های فسیلی قرار داده است. امروزه از بیوگاز در گرم کردن دیگ های بخار کارخانه ها، موتور ژنراتورها برای تولید برق،گرم کردن خانه ها و پخت و پز استفاده می شود. استفاده از فناوری تولید بیوگاز در ایران، تاکنون کاربرد عمومی نیافته است و در مرحله آزمایشگاهی است؛ درحالی که در کشورهای اروپای غربی، جنوب شرقی آسیا و به ویژه چین و هندوستان این فناوری بسیار قابل توجه است و این کشورها با بهره گیری از این فناوری نیاز خود را به سوخت برطرف کرده اند.

سوئد، یکی از بهترین مصرف کنندگان بیوگاز در صنعت حمل و نقل است و برنامه ریزی شده است تا سال ۲۰۵۰ میلادی ۴۰ درصد از نیاز این کشور در بخش حمل و نقل از طریق بیوگاز تامین شود. براساس این گزارش، هزینه تولید بیوگاز در سوئد از تولید بنزین با صرفه تر است، زیرا تولید یک مترمکعب بیوگاز که شامل تولید، اصلاح و متراکم سازی است، ۵/۳ تا ۵/۴ کرون سوئد است که این مقدار، حدود ۷۰ درصد هزینه های جاری بنزین در سوئد است. بررسی ها نشان می دهد درصورت استفاده از بیوگاز در صنعت حمل و نقل، میزان آلاینده دی اکسیدکربن که سبب افزایش گاز گلخانه ای جهان می شود تا حدود ۶۵ تا ۸۵ درصد کاهش می یابد.
باکتری های ویژه ای واکنش های تجزیه ای و بی هوازی مواد آلی را به منظور تولید بیوگاز انجام می دهند. این گروه باکتری ها قادر به شکستن و تجزیه مواد آلی پیچیده و ساده هستند که سرانجام به تولید بیوگاز منجرمی شود. این باکتری ها از باکتری های مزوفیل و تا حدودی گرما دوست، هستند و در دمای ۷۵ تا ۱۰۰ درجه فارنهایت می توانند زندگی کنند. تحقیقات نشان می دهد که بهترین دما برای رشد این گونه باکتری ها ۹۵ درجه فارنهایت است که در این دما باکتری ها بیشترین فعالیت آنزیمی را برای تجزیه موادآلی و تولید بیوگاز دارند. با توجه به این موضوع در فصل زمستان که هوا سرد است، تولید بیوگاز در مرداب ها و باتلاق ها متوقف می شود. از شرایط مطلوب دیگر برای تولید بیوگاز، قلیایی بودن (PH=7-8) محیط واکنش است.

تجزیه و تبدیل فضولات و مواد گندیده آلی که می تواند محصول حیوانات اهلی و یا گیاهان باشد، به وسیله باکتری ها در دو مرحله به بیوگاز و بیوماس تبدیل می شود. از بیوگاز استفاده های فراوانی می توان کرد و از بیوماس هم به عنوان کود آلی می توان بهره برد. در مرحله نخست این واکنش بیولوژیک، باکتری های بی هوازی مواد آلی گندیده را به اسید های آلی تبدیل می کنند. در مرحله دوم، گروه دیگری از باکتری ها اسید های آلی به وجود آمده را تجزیه می کنند که در نتیجه آن بیوگاز که بخش عمده آن متان است، تولید می شود.
برای تولید بیوگاز در مناطق روستایی و مجتمع های کشاورزی و دامپروری می توان اقدام به ساخت دستگاه بیوگاز کرد که ساخت آن بسیار آسان و از بخش های زیر تشکیل شده است:

- تانک تخمیر:

تانک تخمیر، بخش اصلی دستگاه بیوگاز است که معمولاً به شکل استوانه و از جنس آجر و یا بتون ساخته می شود. این تانک را می توان یا به صورت کامل درون زمین و یا بخشی از آن را در روی زمین ساخت. مواد زاید آلی پس از ورود به تانک به مدت یک تا دو ماه در آن نگهداری می شوند. در طول این مدت، مواد زاید آلی درشرایط بی هوازی و براثر فعالیت باکتری ها تجزیه می شوند. نتیجه این تجزیه، تولید بیوگاز و مقداری بیوماس است که با تخلیه مرتب بیوماس و و اضافه کردن مواد زاید جدید در تمام روزهای سال می تواند ادامه داشته باشد.

- محفظه گاز:

این محفظه به صورت سرپوشی شناور یا ثابت از جنس فلزی یا بتونی در روی بخش فوقانی تانک تخمیر قرار می گیرد. گازهای تولیدی در تانک تخمیر در بخش زیر این سرپوش جمع می شود که از طریق لوله کشی می توان آن را به نقطه مصرف انتقال داد. نکته مهم در باره این محفظه این است که از افزایش فشار گاز در این محفظه جلوگیری شود؛ بنابراین با نصب فشار سنج در این محفظه می توان فشار گاز را کنترل کرد. - لوله های ورودی و خروجی: هدف از لوله های ورودی و خروجی در دستگاه بیوگاز، ورود مواد خام و تخلیه بیوماس از تانک تخمیر است. جنس لوله ها را می توان از نوع پلاستیکی یا بتونی انتخاب کرد. در مناطق روستایی هر خانوار می تواند به طور انفرادی یک دستگاه بیوگاز داشته باشد و یا چند خانوار ساکن در کنار هم می توانند به طور اشتراکی یک دستگاه بیوگاز بسازند. براساس محاسبات انجام شده، کود حاصل از سه راس گاو و یا چند راس گوسفند پاسخ گوی تولید گاز مصرفی هر خانوار در طول سال است. که این میزان تولید گاز، حدود ۵۰۰ لیتر به ازای هر کیلوگرم فضولات تجزیه شده است. بهره برداری و نگهداری از دستگاه بیوگاز به مهارت خاصی نیاز ندارد و هرکس به راحتی می تواند از آن استفاده کند. با توجه به موارد یادشده، لزوم برنامه ریزی برای گسترش منابع انرژی غیرنفتی و استفاده از انرژی های نو در کشورمان به خوبی احساس می شود. با انجام مطالعات و تحقیقات و مشارکت در ساخت دستگاه های بیوگاز در مناطق روستایی می توان در مصرف سوخت های نفتی به شدت صرفه جویی کرد.
در یک نتیجه گیری کلی استفاده از بیوگاز در زندگی روزمره می تواند فایده های زیر را به دنبال داشته باشد:

- بیوگاز به عنوان یک منبع انرژی محلی و تجدید شونده؛
- بهبود وضعیت ایمنی صنعتی و خانگی، همچنین سودآور بودن آن؛
- بهبود وضعیت کیفیت هوا و کاهش بوهای نامطبوع؛
- کاهش انتشارگازهای گلخانه ای دشمن لایه ازون؛
- رشد اقتصادی و تضمین منبع انرژی؛
- جمع آوری مواد زاید و حیوانی در یک نقطه و جلوگیری از پراکندگی آنها در محیط اطراف؛
- استفاده از بیوماس تولیدی به عنوان کود سالم و مطمئن در کشاورزی

آشنایی با روش‌های بهبود بازیابی نفت

آشنایی با روش‌های بهبود بازیابی نفت

 

از آن جا که بیشتر مخازن کشور در نیمه دوم عمر خود به‌سر می‌برند و هر چه از عمر مخزن می‌گذرد برداشت از آن دشوار‌تر می‌شود باید با روش‌های خاصی با توجه به شرایط مخزن، برداشت از آن را بهتر و بیشتر کرد، البته این نکته را نباید فراموش کرد که در روش‌های ازدیاد برداشت باید از میان روش‌های مختلف بهترین آن را از لحاظ عملی و اقتصادی انتخاب کرد. در این مقاله سعی شده روش‌های مختلف ازدیاد برداشت معرفی و موارد کاربرد آن ها توضیح داده شود.

روش‌های بهبود بازیابی نفت Enhanced Oil Recover) )


مقدمه:
مخزن هیدروکربوری ساختاری است متخلخل و نفوذپذیر در زیرزمین که انباشتی طبیعی از هیدروکربورها را به صورت مایع و یا گاز در خود جای داده و به‌وسیله‌ی سنگ‌های غیرتراوا از محیط اطراف مجزا گردیده است. درتوصیفی ملموس‌تر می‌توان مخازن هیدروکربوری را به بادبادکی پر از هوا تشبیه کرد که پوسته‌ی این بادبادک نقش همان سنگ‌های غیرتراوا را بازی می‌کند و به محض سوراخ کردن این محیط متعادل سیال‌های مخزنی (هم‌چون هوا که به سرعت از بادبادک خارج می‌شود) توسط نیروهای هیدرولیکی به درون چاه رانده می‌شوند. البته قدرت این رانش طبیعی هم‌زمان با تولید از مخزن کاسته می‌شود، چنان‌که برای نمونه گفته می‌شود مخازن ایران به‌ طور متوسط سالانه ۱۰-۸ درصد افت طبیعی فشار مخزن و افت دبی‌ تولید از چاه - افت دبی‌ تولید از چاه با افت فشار مخزن رابطه مستقیم دارد - دارند.

با افت مداوم فشار مخزن، دبی‌ تولید رفته‌رفته کم شده تا جایی که دیگر تولید طبیعی از مخزن مقرون به‌صرفه نخواهد بود. این نقطه زمانی اتفاق می‌افتد که بازیابی (Recovery) نفت از مخزن به نسبت پائین است. این بازیابی برای مخازن ایران حدود ۱۵-۲۰ درصد است؛ به عبارتی ۸۵ تا ۸۰ درصد کل نفت مخزن در سازند باقی می‌ماند. بنابراین برای برداشت نفت‌های باقی‌مانده در مخزن نیازمند روش‌های جدید و تکنیک‌های پیشرفته هستیم.
ازاین رو می‌توانیم مراحل تولید از یک چاه را به‌طور کلی به دو دسته‌ی زیر تقسیم کنیم (که البته این تقسیم‌بندی به نحوه‌ی برداشت از مخزن اطلاق می‌شود):

۱/ تولید طبیعی (Primary Recovery)
2. تولید بهبودیافته (IOR or Improved Oil Recovery)

واژگان

فشار اشباع(Bubble Point Pressure):
با افت فشار مخزن، گاز محلول در نفت توانایی آن را پیدا می‌کند که از نفت خارج شود، «فشار اشباع» فشاری است که اولین حباب گاز از نفت جدا می‌شود. روشن است که در فشار‌های بالاتراز آن تنها یک فاز مایع و در فشار‌های پایین ‌تر از آن دو فاز مایع و گاز وجود دارد.

کلاهک گازی (Gas Cap):
در صورتی که در یک مخزن نفتی هر سه سیال آب، نفت و گاز وجود داشته باشد، ترتیب قرار گرفتن سیالات درون مخزن به گونه‌ای است که از پایین به بالا ابتدا آب، بعد نفت و سپس گاز قرار می‌گیرد. به سازند‌ی که در آن گاز قرار دارد، سازند گازی و به سازندهای دیگر سازندهای نفتی و گازی می‌گویند.

به بخش بالایی مخزن که حدفاصل میان پوش سنگ و سطح تماس نفت و گاز است، کلاهک گازی مخزن نفتی می‌گویند. گفتنی است که برخی از مخازن فاقد کلاهک گازی، برخی دیگر فاقد بخش آب ده هستند و برخی فاقد هر دوی آن‌ها هستند.

سفره آبی(Aquifer):
سازند آبی‌ای که در پایین مخزن می‌تواند وجود داشته باشد.

امتزاج‌پذیری (Miscibility):
دومایع را وقتی امتزاج‌پذیر می‌گویند که کاملاً درهم حل شده و امولیسون نسازند.

اوپک (OPEC):
اوپک که شکل خلاصه شده‌ی (Organizations of Petroleum exporting Countries) یعنی سازمان کشورهای صادرکننده‌ی نفت است . این سازمان در ۱۴-۱۰ سپتامبر ۱۹۶۰ توسط ۵ کشور ایران، عربستان، ونزوئلا و کویت و عراق تشکیل شد که بعد از آن ۹ کشور دیگر الجزائر، قطر، نیجریه، امارات، اندونزی، لیبی، الجزیره، اکوادور، آنگولا به آن‌ها اضافه شدند. هدف از تشکیل این سازمان کنترل سیاست‌های قیمتی نفت بود.

تولید طبیعیPrimary Recovery) )

برداشت اولیه یا تولید طبیعی به استحصال نفت تحت مکانیسم‌های رانش طبیعی موجود در مخزن و بدون استفاده از انرژی خارجی نظیر آب و گاز اطلاق می‌شود. همان‌گونه که بیان شد از یک مخزن تا مدت تقریباً کمی می‌توان به‌طورطبیعی تولیدی اقتصادی داشته باشیم . در تولید طبیعی از مخزن رانش نفت به‌علت مکانیسم‌های خاصی انجام می‌پذیرد که درزیر به بیان آن‌ها خواهیم پرداخت:

- انبساط سنگ و سیال (Rock and Fluid expansion)
- رانش توسط گازمحلول (Solution Gas Drive)
- رانش کلاهک گازی (Gas Cap Drive)
- رانش توسط آب ورودی به مخزن (Aquifer Drive)


انبساط سنگ و سیال:
دراین مکانیسم فشار وزنی لایه‌های بالا برروی سازند مخزن و انبساط خود سیال باعث رانش نفت به درون چاه خواهد شد.

رانش توسط گازمحلول:
به طور طبیعی نفت درشرایط دما و فشار مخزن مقداری گاز درخود به‌صورت حل شده دارد که با تولید و رساندن نفت به سطح زمین این گاز آزاد می‌شود. بنابراین می‌توان گفت حجم نفت درشرایط مخزن بیشترازحجم آن درسطح زمین است. البته شاید این‌گونه به نظر برسد که در این جا این پدیده بدون درنظرگرفتن تفاوت دما و فشار سازند با سطح زمین توضیح داده شده است. درصورتی‌که با کمی دقت متوجه می‌شویم که تغییرات دما و فشار نفت از سازند به سطح زمین به ترتیب باعث کاهش حجم و افزایش حجم می‌شوند، چون دما و فشار درسازند نفتی نسبت به دما و فشار درسطح زمین بالاتر است که این کاهش درمورد دما باعث کاهش حجم و درمورد فشار باعث افزایش حجم می‌شود. در این صورت کاهش و افزایش حجم پدید آمده تقریباً اثر یکدیگر را خنثی می‌کنند، بنابراین می‌توان گفت مهم‌ترین عامل تغییر حجم نفت از سازند به سطح زمین همان گازحل شده درنفت است. نسبت حجم نفت در شرایط دما و فشار مخزن به حجم نفت در شرایط دما و فشار سطح زمین را با ضریب حجمی سازند تعریف می‌کنند که با توجه به توضیحات قبلی همواره بزرگتر از یک خواهد بود.
به دلیل آن که با تولید از مخزن فشار آن افت می‌کند، اگر این افت فشار تا رساندن فشار مخزن به فشار اشباع ادامه یابد مقداری از کل گاز محلول درشرایط مخزن آزاد شده که انبساط این گاز باعث رانش نفت به درون چاه خواهد شد.

رانش کلاهک گازی:
دربرخی از مخازن دربالای سازند نفتی کلاهک گازی وجود دارد که انبساط این کلاهک گازی در زمان تولید از مخزن، نفت را مانند پیستونی از بالا به سمت پائین می‌راند که مسلماً هرچه کلاهک گازی بزرگتر باشد بازیابی نفت ازاین مخزن بالاتر خواهد بود.

ورود آب به سازند نفتی:
بر خلاف شیوه رانش گازی، به جای آن‌که گاز از بالا به سیال (نفت) نیرو وارد ‌کند و باعث تولید طبیعی نفت ‌شود، می‌توان لایه‌ی آبی‌ای را تجسم کرد که از پائین سازند نفتی همانند پیستون نفت را به درون چاه می‌راند.
البته باید توجه کرد که درتولید طبیعی نفت، انبساط سنگ و سیال و گازمحلول درتمامی مخازن به‌عنوان نیروی رانشی نفت به درون چاه عمل می‌کند اما می‌توانیم مخازنی داشته باشیم که هردو یا یکی ازدوعامل کلاهک گازی و سفره آبی را داشته باشند و یا اصلاً هیچ‌یک را نداشته باشد.


تولید بهبودیافته (IOR or Improved Oil Recovery )

پیش از توضیح تولید بهبود یافته می‌توان این‌گونه بیان کرد که اصولاً تولید طبیعی نفت ازهر مخزنی به فشار اولیه مخزن، نفوذپذیری سنگ مخزن و گرانروی نفت رابطه دارد. روشن است که هرچه فشاراولیه مخزن و نفوذپذیری سنگ مخزن بالاتر و گرانروی نفت پائین‌تر باشد، بازیابی اولیه بالاتر خواهد بود. عدم تعادل دراین پارامترها باعث می‌شود که تکنیک‌های دیگری دربازیابی نفت به‌کار برده شود. کلیه روش‌هایی که طی آن به مخازنی که تحت شرایط طبیعی خود قادر به تولید اقتصادی نیستند و از بیرون انرژی داده شده و یا موادی درآن‌ها تزریق می‌شود، روش‌های ازدیاد برداشت نامیده می‌شوند. (Enhanced Oil Recovery : EOR)
البته دربعضی مواقع که سیال (نفت) درته چاه وارد شده و فشار سیال درته چاه توانایی بالا آوردن آن را به سرچاه ندارد، تکنیک‌های دیگری مانند فرازش گاز (بدین‌گونه که گاز را ازسطح زمین به درون چاه تزریق می‌کنند واین گاز با نفت درون چاه مخلوط امتزاج‌پذیری را به وجود می‌آورد که چگالی آن از چگالی نفت اولیه پائین‌تر است و می‌توان با همان فشار ته‌چاه ، نفت را به سرچاه انتقال داد) و یا پمپ‌های درون چاهی (که نفت را از ته چاه به سر چاه پمپاژ می‌کنند) به‌کار گرفته می‌شود؛ اما اصولاً ازاین تکنیک‌ها به‌عنوان یکی ازروش‌های ازدیاد برداشت یاد نمی‌شود؛ آن‌چه روش‌های ازدیاد برداشت(EOR) اطلاق می‌شود روش‌هایی است که ازطریق تزریق مواد به درون مخزن به سیال انرژی داده می‌شود و هدف این روش‌ها، کاهش میزان نفت پس‌ماند مخزن است، این روش‌ها را به دودسته زیر تقسیم می‌کنند:

۱- برداشت ثانویه (Secondary Recovery)
2- برداشت ثالثیه (Tertiary Recovery)


1-2) برداشت ثانویه (Secondary Recovery):
این روش، افزودن انرژی‌های خارجی بدون اعمال هیچ‌گونه تغییر در خواص فیزیکی سیالات و سنگ مخزن است . به زبان ساده‌تر، سیال تزریقی تنها نقش هل‌دهنده و تعقیبی دارد. لازم به ذکر است اگر چه این تکنیک درابتدا با تزریق هوا که ارزان‌ترین و دردسترس‌ترین ماده بوده است، اجرا شده، اما تاکنون در موارد قلیلی، ازهوا به‌عنوان ماده تزریقی استفاده شده است. تزریق هوا گرچه معمولاً تولید را برای مدت‌کوتاهی افزایش می‌داد اما به سرعت مشکلات عملیاتی زیادی را پدید می‌آورد.
بسیاری از مشکلات پدید آمده درتزریق هوا، ناشی از وجود اکسیژن در آن است. چراکه اکسیژن به شدت واکنش‌دهنده است و مشکلات عدیده‌ای را درتسهیلات سرچاهی و داخل مخزن پدید می‌آورد. برخی ازاین مشکلات عبارتند از:
- اشتعال خود به خودی نفت در نزدیکی چاه تزریق
- خوردگی (که مهم‌ترین عامل آن اکسیژن است)
- تشکیل امولسیون‌ها
این مشکلات و مشکلات دیگر باعث شد که از هوا به‌ عنوان ماده تزریقی در روش‌های ازدیاد برداشت ثانویه استفاده ‌نشود. امروزه از گاز و آب‌ به ‌جای هوا در این تکنیک استفاده می‌شود. اولین برنامه بازیابی ثانویه درایران درسال ۱۳۵۵ درمیدان هفتکل با روش تزریق گاز به مرحله اجرا در‌آمد پس ازآن درسال ۱۳۵۶ تزریق گاز درمیدان گچساران با هدف فشارزدائی و تثبیت فشار شروع شد که تزریق گاز دراین دو میدان عظیم نفتی کشورهم‌چنان ادامه دارد و باعث بالابردن بازیابی از حدود ۲۰-۱۵ درصد به حدود ۲۵-۳۰ درصد شده است. هم‌اکنون ایران از برنامه‌ی تزریق گاز به مخازن عقب است و بر اساس گزارش مرکز پژوهش‌های مجلس شورای اسلامی محاسبات انجام شده نشان می‌دهند که ۲۴ مخزن از کل مخازن نفتی مناطق نفت‌خیز جنوب در اولویت تزریق – گاز- قرار دارند که در۱۶ مخزن زمان تزریق سپری شده و هر چه سریعتر باید از افت فشار آنها جلوگیری به عمل آید، ۸ مخزن دیگر نیز ظرف ۲۰ سال آینده نیاز به تزریق خواهند داشت.

۲-۲)روش‌های ازدیاد برداشت ثالثیه :(Tertiary Recovery)
دراین روش انرژی خارجی به مخزن اعمال می‌شود و درنتیجه‌ی آن تغییرات اساسی فیزیکی و شیمیایی درخصوصیات سیال مخزن پدید می‌آید. به زبان ساده‌تر دراین‌جا ماده‌ی تزریقی با تغییردادن خصوصیات سیستم سیالی (مانند کم کردن گرانروی و یا تغییر چسبندگی میان سنگ و سیال) باعث ازدیاد برداشت خواهد شد. عملیات ثالثیه را می‌توان به موارد زیر تقسیم کرد:
- سیلاب‌زنی امتزاجی با گاز
- سیلاب‌زنی شیمیایی
- فرآیندهای حرارتی
- فرآیندهای استفاده از کف
- فرآیندهای تزریق میکروب (البته دربعضی تقسیم‌بندی‌ها تزریق میکروب را به‌عنوان فرآیندهایی جدا از “EOR” و تحت عنوان (MEOR (Microbial Enhanced Oil recovery می‌شناسند. در این روش میکروب‌ها و مواد غذایی را به درون چاه تزریق می‌کنند و این میکروب‌ها تحت عواملی یا تولید اسید می‌کنند که برای حل کردن سنگ‌های کربناتی بکار می‌رود و یا تولید گاز کرده که باعث بالابردن فشارمخزن و یا پائین آوردن گرانروی نفت می‌شوند.
متأسفانه در حال حاضر در بزرگ‌ترین کشورهای تولید‌کننده عضو اوپک (OPEC) همچون ایران، کویت، عربستان و عراق روش‌های ازدیاد برداشت ازنوع سوم (ثالثیه) هنوز به مرحله‌ی اجرا درنیامده است اما در برخی از مخازن ایران و کویت روش‌های بازیابی حرارتی مانند تزریق بخار آب در حال بررسی است. کل روش‌های ازدیاد برداشت را به تازگی به ‌صورت زیرتقسیم می‌کنند: (برخلاف تقسیم‌بندی قدیم به صورت ثانویه و ثالثیه)
۱- گرمایی:
- تزریق بخارآب (Steam Flooding)
- سیلاب‌زنی آب گرم (HOT Water Flooding)
- احتراق درجا (In situe combustion ) [خشک (Dry) یا مرطوب (Wet)]
- گرم کردن حرارتی ( تزریق آب) (Water Flooding)

2- غیرگرمایی:
- سیلاب شیمیایی(Chemical flooding)(پلیمری یا قلیایی)
-جابه‌جایی امتزاج‌پذیر(Miscible Flooding ):
- رانش گازغنی‌ شده
- سیلاب الکلی
- سیلاب گاز Co2
- سیلاب گاز N2
- جابه‌جایی غیرامتزاج‌پذیر(immisible Flooding )(- گاز طبیعی یا گاز طبیعی سوخته شده)

در مقالات بعدی به تفصیل به توضیح درباره‌ی هر یک از روش‌های پیش گفته خواهیم پرداخت.

مشخصات نفت

مشخصات نفت

نفت خام به جهت وجود ترکیبات گوگرد بوی نامطلوبی دارد. بخش اعظم نفت خام از هیدراتهای کربن تشکیل شده و مقدار کمی عناصر دیگر نیز به آن مخلوط می‌گردد، که این عناصر در زیر با درصدشان نشان داده شده‌اند.

عنصرحداقل درصد وزنیحداکثر درصد وزنی
کربن82.287.1
هیدروژن11.814.7
گوگرد0.15.5
اکسیژن0.14.5
نیتروژن0.1 1.5

جدول ازسلی (1985)

دراین جدول عناصر دیگری مانند وانادیوم ، نیکل و اورانیوم با درصد وزنی حداکثر 0.1 در ترکیب نفت خام موجود هستند. بعلاوه در خاکستر نفت خام آثاری از عناصر C r ، Cu ، Pb ، Mn ، Sr ، Ba ، Mo ، Mg ، Ca ، Ti ، Al ، Fe و Si یافت می‌شود که بعضی از عناصر بالا مانند V-Ni-U احتمالا در رابطه با عنصر ارگانیکی اولیه (مادر) بوجود آمده و بعضی دیگر از عناصر مشخصات ژئوشیمیایی سنگ دربرگزیده را نشان می‌دهند.
قابل ذکر است که آثاری از نمک ، آب و سولفید هیدروژن نیز نیز درنفت خام مشاهده می‌شوند.

خواص فیزیکی نفت خام

ویسکوزیته

همانطور که نفت خام ممکن است با دخالت عواملی به رنگهای زرد ، سبز ، قهوه‌ای ، قهوه‌ای تیره تا سیاه مشاهده گردد، لذا ویسکوزیته متغیر را برای آنها خواهیم داشت. بنابراین نفت خام درسطح زمین دارای ویسکوزیته بیشتر بوده و بعبارتی ویسکوزتر است. چون در مخزن زیرزمینی یکی از عوامل دخیل حرارت موجود درمخزن می‌باشد، که همراه با این عامل ، عمق نیز موثر می‌باشد. همچنین سن نفت را به لحاظ زمان مخزن شدن را درطیف تغییرات ویسکوزیته سهیم می‌دانند.

ترکیبات مولکولی نفت خام

تعداد ترکیبات مولکولی نفت خام وابسته به سن زمین شناسی آن ، عمق تشکیل آن ، منشا آن و موقعیت جغرافیایی آن متغیر می‌باشد. برای مثال نفت خام Ponca city از Oklahoma شامل حداقل 234 ترکیب مولکولی می‌باشد.

گروههای تشکیل دهنده نفت خام

هیدروکربنها (Hydrocarbons)

هیدروکربنها همانطور که از نامشان مشخص است، شامل گروههایی هستند که ترکیبات ملکولی آنها فقط از هیدروژن و کربن تشکیل شده است. انواع هیدروکربنها عبارتند از :

  • هیدروکربن‌های پارافینی (پارافینها) 
  • هیدروکربنهای نفتنی (سیکلوپارافینها یا نفتنیکها ) 
  • هیدروکربنهای آروماتیک (بنزنوئیدها) 

غیرهیدروکربنها (Heterocompounds)

این گروه شامل ترکیباتی غیر از هیدروژن و کربن می‌باشند و عناصری از قبیل اکسیژن ، نیتروژن ، گوگرد ، اتمهای فلزی همراه با هر کدام از اینها و یا ترکیب با همه اینها نظیر Ni ، V می‌باشد.

وزن مخصوص نفت خام

از خواص فیزیکی نفت خام که ارزش اقتصادی نفت خام بر مبنای آن سنجیده می‌شود، وزن مخصوص آن می‌باشد. لذا سنجش و نحوه محاسبه فرمول آن مهم است. اکثر کشورهای جهان ، وزن مخصوص نفت خام را برحسب درجه A.P.I که یک درجه بندی آمریکائی است، محاسبه می‌کنند. مشابه همین درجه بندی و سنجش ، وزن مخصوص نفت خام را در کشورهای اروپائی با درجه بندی Baume محاسبه می‌کنند که از لحاظ مقدار اندکی از درجه A. P.I کمتر می‌باشد.

 

سنجش وزن مخصوص نفت خام

سنجش وزن مخصوص نفت خام مانند سایر مواد و مایعات برمبنای قانون کلی که همان وزن واحد حجم مایع است، در شرایط ºF 60 و P=1at سنجیده می‌شود و مقدار آن در فرمول جایگزین شده و وزن مخصوص نفت خام را بر حسب درجه A.P.I یا درجه Baume می‌دهد.

بدلیل اینکه S.G (Pure water)=1 می‌باشد. لذا وزن مخصوص آب با درجه 10 ، API خواهدبود. بدلیل کوچکتر بودن وزن مخصوص نفت از آب که همواره عددی کوچکتر از 1 را برای وزن مخصوص نفت در 60ºF خواهیم داشت. لذا هیچوقت در جدولها و محاسبات ، وزن مخصوص نفت بر حسب درجه A.P.I کوچکتر و مساوی 10 نخواهیم داشت.

تاثیر درجه حرارت بر وزن مخصوص نفت خام

از عواملی که سبب تغییر در وزن مخصوص نفت خام می‌شوند، تغییرات دما است. یعنی با بالارفتن دما ، وزن مخصوص کمتر شده و به درجه A. P.I افزوده می‌شود. همچنین بالا رفتن درجه حرارت اثر معکوس بر روی ویسکوزیته نفت خام می‌گذارد.

انواع مختلف نفت برحسب A.P.I

  • نفت سنگین با 10 الی 20 درجه A.P.I
  • نفت متوسط با 20 الی 30 درجه A.P.I
  • نفت سبک با بیش از 30 درجه A.P.I

وزن مخصوص نفت‌ها بستگی به ماهیت هیدروکربورهای مختلف دارد. هر قدر مقدار گاز محلول در روغن بیشتر باشد، چگالی آن کمتر خواهد بود. بنابراین پارافین‌ها دارای پایین ترین چگالی و نفتیک‌ها کمی بالاتر و آروماتیک‌ها بالاترین چگالی را دارند.

ضریب انبساط نفت خام

ضریب انبساط نفت خام از 6.1x10-4 الی 8.3x10-4 در نوسان بوده که با کاهش چگالی ، ضریب انبساط آن افزایش می‌یابد.

ارزش حرارتی و گرمایی ویژه نفت خام

ارزش حرارتی پایین نفت بین 9000 الی 11000 کیلوکالری است. گرمای ویژه نفت در دمای معمولی از 0.35 الی 0.55 کیلوکالری به کیلوگرم درجه است، که در صورت ازدیاد درجه حرارت به مقدار آن افزوده می‌شود.

نقطه اشتعال نفت

نقطه اشتعال نفت نیز به مقدار مواد زود جوش آن مربوط است، و می‌تواند از صفر الی 200C باشد. لذا در حمل و نقل نفت خام به دلایل ایمنی ، قسمتی از زودجوش‌ها را پایدار نموده و نقطه اشتعال را بالا می‌برند.

نقطه سفت شدن نفت خام

نقطه سفت شدن نفت خام عبارتست از دمائی که در آن خاصیت جاری شدن نفت خام به اتمام می‌رسد. این دما در حمل و نقل و انبارکردن نفت اهمیت بسزائی دارد.

پالایش نفت خام

از تصفیه یا پالایش نفت خام می‌توان فرآورده‌های زیادی بدست آورد، که قابل فروش در بازار باشند. نخستین گام در پالایش نفت خام عمل تقطیر است. تحمیل حرارت‌های زیاد در موقع تقطیر باعث تجزیه و شکسته شدن مولکول‌های نفت شده و اشکالاتی در ادامه پالایش نفت بوجود می‌آورد، که از عواقب آن ، ضایع شدن مواد و افزایش هرینه را می‌توان نام برد.

استخراج پلاتین از کاتالیست مستعمل فرآیند اکسیداسیون

ابتدا ذرات کاتالیست خرد می‌گردد و در دمای 500 درجه سانتیگراد و به مدت 8 ساعت در حضور مقدار کافی اکسیژن قرار داده می‌شود، در این شرایط کک و ترکیبات آلی موجود اکسید شده و CO2 تولید می‌گردد. سپس کاتالیست‌ها در حضور اسید فرمیک و به مدت 30 دقیقه توسط اسید فرمیک واکنش داده سایت‌های فلزی احیا می‌گردد. در مرحله بعد ذرات جامد کاتالیست از اسید فرمیک جدا می‌شود و در حضور اسید کلریدریک به میزان  5 برابر مقدار آن‌ها و در دمای 100 درجه سانتیگراد حرارت داده می‌شود. کاتالیست‌ها در حضور تیزآب قرار داده می‌شوند تا تیزآب و اسید کلرید بطور مجزا تبخیر شود. پس از خالص‌سازی با هیدروکسید سدیم آهن، مس و سایر فلزات رسوب تشکیل می‌دهند و نهایتاً پلاتین در حضور محلول سدیم بور هیدرید به صورت رسوبات سیاه‌رنگ جدا می‌شود

تشکیل مخازن نفت , پالایش نفت

تشکیل مخازن نفت

منشاء نفت مواد آلی موجود در موجودات زنده است. قبل از دوره کامبرین به علت عدم و یا کمی موجودات زنده، در رسوبات مربوط به این دوران نشانه ای از مواد آلی و در نتیجه نفت وجود ندارد. اما بعد از این دوره بقایای جانوران و گیاهان همراه رسوبات ته نشین شدند و رسوبات بعدی آنها را مدفون کردند.
مواد آلی موجود در جانوران و گیاهان نسبت به مواد اکسید کننده بسیار حساس هستند و اگر در معرض این مواد قرار گیرند تجزیه می شوند.
بنابراین در هنگام قرار گیرند ته نشین شدن، مواد آلی اگر در معرض اکسید کننده ها اکسید شده و نفتی دیگر در کار نخواهد بود. اما اگر رسوب گذاری به سرعت انجام شود و مواد آلی در زیر رسوبات مدفون شوند دیگر فرصتی برای اکسید کننده ها باقی نخواهد ماند تا مواد آلی را اکسید کرده و باعث از بین رفتن آنها شوند.پس یکی از شرایط بوجودآمدن نفت سرعت در هنگام رسوب گذاری مواد آلی است.
مواد آلی در لایه های زیرین، در اثر فشار و حرارت ابتدا به کروژن بعد به آسفالت و در پایان به پترولیوم تبدیل می شوند. این فرایندها از لحاظ بیوژنتیک بررسی می شوند و برای تبدیل به انواع مختلف رنج ها، فشار مشخص لازم است.
در این فرایندS,O,W مواد آلی به C,H پترولیوم تبدیل می شوند. یعنی مواد سنگین همچون Sبه H,C تبدیل می شوند یعنی مواد با وزن ویژه بالا به مواد با وزن ویژه پایینتر تبدیل می شوند که با API مشخص می شوند. هر چه S پترولیوم ها کمتر باشد API آن بالاتر خواهد بود.
این فرایند ها در سنگ منشأ اتفاق می افتد. سنگ منشأ معمولاً کم تخلخل است و به علت فشار لایه های بالایی٬ پترولیوم از سنگ منشاء حرکت می کند. این فرایند را مهاجرت اولیه گویند. بعد این مواد از لایه هابه سمت سنگ مخزن حرکت می کنند. این فرایند را مهاجرت ثانویه گویند.
حرکت پترولیوم تا زمانی که هیدروکربن ها به تله بیفتند ادامه خواهد داشت. بدین صورت که این هیدروکربن ها بصورت جاری و یا منقطع از میان لایه های توارا به طرف این تله حرکت می کنند. این تله نفتی، مخزن نام دارد که باید دارای خواص توارایی و تخلخل خوبی باشد.
زمانی که نفت قابل توجهی در مخازن نفتی جمع شود این مکان را میدان نفتی گویند. یک میدان نفتی دارای شرایط خاصی می باشد که مهمترین آنها عبارتند از:

1) پوش سنگ 2) سنگ مخزن 3) سنگ منشاء 4) مهاجرت 5) تله نفتی
1) سنگ مخزن:
سنگی تراوا و متخلخل است علت تخلخل آن برای داشتن فضای کافی برای نگهداری هیدروکربن ها و تراوایی آن برای قدرت عبور و حرکت دهی هیدروکربن ها به طرف چاههای نفت که این از مهمترین عوامل است.
مخازن معمولاً از ماسه سنگ و یا سنگ آهک است. ماسه سنگ دارای تراوای بالایی است و جزء مخازن خوب است. ولی بعضی مخازن از جنس سنگ آهک است با تراوایی بالا علت این امر وجود شکافهایی در این مخازن که باعث شده تراوایی سنگ مخزن ما بالا بیایید. اما به علت اختلاف فاز تر و غیر تر در انواع گوناگون مخازخ٬ کیفیت مخزنی نیز متفاوت خواهد بود. در مخازن ماسه ای فاز تر نفت ولی در آهکی آب می باشد. بنابراین در مخازن ماسه ای نفت با فشار تمایل به خروج از مخزن را داشته در صورتی که این مسئله در مخازن آهکی کاملا متفاوت بوده و این آب است که تمایل دارد با فشار خارج شود.
2) پوش سنگ:
این سنگ برخلاف سنگ مخزن از تراوایی و تخلخل بسیار پایین برخوردار است که مانع فرار نفت از طرف این سنگ است. پوش سنگ می تواند در بالا و یادر اطراف سنگ مخزن وجود داشته باشد و بر اساس نوع مخزن اشکال متفاوتی را دارا باشد. عدم وجود پوش سنگ موجب فرار نفت از سنگ مخزن شده ودر این صورت مخزن نفتی موجود نخواهد بود. در ایران بهترین پوش سنگ در مناطق نفت خیز جنوب سازند گچساران می باشد.
3) تله نفتی:
این همان شکل مخزن است که باعث می شود با کمک پوش سنگ نفت را در خود ذخیره کند. بطور کلی دو نوع مخزن داریم:
الف)‌ ساختمانی ب) استراتیگرافیک ج) مختلط که بسته به تغییرات ساختمانی و یا رخساره ای و سنگ شناسی ازهم متمایزند.
الف) ساختمانی
این مخزن براساس تغییرات ساختمانی درون زمین بوجود می آید. که از مهمترین آنها می توان چین ها و گسل ها را نام برد. که در اینها اتفاقات ساختمانی زمین باعث جابجایی لایه ها و قرار گرفتن سنگ مخزن و پوش سنگ بصورتی می شود که پتانسیل ذخیره نفت را داشته باشند.
ب) استراتیگرافیک
که بر اساس تغییرات رخساره ای و سنگ شناسی بوجود می آید. یعنی گونه های متفاوت سنگ ها در اثر عوامل مختلف به جز ساختمانی در کنار هم قرار خواهند گرفت٬ بگونه ای که شرایط تجمع نفت بوجود آید. «در مخازن باید نیز به مسأله کلوژر باید توجه داشت. بدین معنی که به عنوان مثال طاقدیس ما ممکن است تمامی شرایط ذخیره نفت را داشته باشد ولی بگونه ای باشد که نفت نتواند در آن جمع شود.»


پالایش نفت

نفت خام حاصل از چاه دارای مواد نا خواسته از قبیل آب و جامداتی مانند شن ، قیر و گازهای متان و اتان می‌باشد. برای جداسازی اینگونه عوامل ، آنرا وارد مخازنی می‌کنند تا جامدات موجود در آن ته‌نشین شده و گازهای آن خارج شود. سپس وارد جداساز سانتریفوژی شده که نقش آن جدا کردن تتمه آب ، گاز و جامدات معلق در آن می‌باشد. برای حذف نمکهای معدنی ، نفت را با آب ولرم می‌شویند. آنگاه قسمتی از نفت توسط لوله به پالایشگاه فرستاده شده و قسمتی جهت صدور به بنادر تلمبه می‌شود.

تقطیر
برای تفکیک برش‌های متشکله نفت خام ، عملیات فیزیکی و شیمیایی چندی بر روی آن بعمل می‌آورند تا فرآورده‌های مورد نیاز جامعه امروزی را تولید نمایند. از مهمترین آنها تقطیر جزء به جزء نفت است که در برج تقطیر صورت می‌گیرد. تقطیر جزء به جزء عبارت است از یک سری تبخیر و تبرید که در سینی‌های یک برج استوانه‌ای صورت می‌گیرد. مایعات خالص در فشار محیط ، در دمایی به جوش می‌آیند که در آن دما ، فشار بخار آن برابر فشار محیط گردد. مایعات مخلوط در حدود دمایی که حاصل جمع فشار‌های جزئی عوامل تشکیل دهنده آنها برابر فشار محیط گردد به جوش می‌آید.
در نقطه جوش ، فازهای بخار و مایع در حال تعادل می‌باشند. چنانچه فشار ، کاهش یابد، تبخیر صورت می‌گیرد و در حالت معکوس ، تبرید اتفاق می‌افتد. از فشار بخار برای محاسبه ترکیب گازهای مخلوط در حالت تعادل استفاده می‌شود. وقتی که اجزا تشکیل دهنده یک محلول در برج تقطیر بطور دائم جدا می‌شوند بخارهایی که به سمت بالا حرکت می‌کنند، با ترکیبات فرارتر مایع برگشت کننده که به سمت پایین سرازیر است برخورد کرده و غلیظ‌تر می‌شوند.
انواع تقطیر
تقطیر در فشار محیط: در این روش ، فرآیند تقطیر در فشار محیط صورت می‌گیرد.
تقطیر با بخار آب: وقتی که تقطیر در مجاورت بخار ماده مخلوط نشدنی صورت می‌گیرد، فشار بخار یکی تحت تاثیر دیگری قرار نگرفته و مخلوط در دمایی که مجموع فشارهای جزئی آنها برابر فشار محیط گردد تقطیر می‌شود.
تقطیر در خلا: در این روش ، فرآیند تقطیر در خلاء (در فشار 40 میلی‌متر جیوه) صورت می‌گیرد.
تقطیر در خلاء و بخار: این روش با انتقال گرما توسط بخار آب و با استفاده همزمان از پمپ خلاء جهت کاهش فشار کلی صورت می‌گیرد. بطور کلی این روش دارای اشکالاتی بوده و از آن زیاد استفاده نمی‌شود.
تقطیر در فشار: این روش برعکس تقطیر در خلاء بوده و باعث می‌شود که فرایند تقطیر ، در دمای بیشتری نسبت به آن در فشار محیط صورت گیرد و دمای بالاتر باعث گسسته شدن مولکولهای نفت گردیده و ترکیب آنها را تغییر می‌دهد.
روشهای جدید تقطیر: این روشها شامل یک یا دو مرحله تقطیر در فشار محیط بوده که توسط تقطیر با بخار همراه می‌شود.

تشکیل مخازن نفت , پالایش نفت

تشکیل مخازن نفت

منشاء نفت مواد آلی موجود در موجودات زنده است. قبل از دوره کامبرین به علت عدم و یا کمی موجودات زنده، در رسوبات مربوط به این دوران نشانه ای از مواد آلی و در نتیجه نفت وجود ندارد. اما بعد از این دوره بقایای جانوران و گیاهان همراه رسوبات ته نشین شدند و رسوبات بعدی آنها را مدفون کردند.
مواد آلی موجود در جانوران و گیاهان نسبت به مواد اکسید کننده بسیار حساس هستند و اگر در معرض این مواد قرار گیرند تجزیه می شوند.
بنابراین در هنگام قرار گیرند ته نشین شدن، مواد آلی اگر در معرض اکسید کننده ها اکسید شده و نفتی دیگر در کار نخواهد بود. اما اگر رسوب گذاری به سرعت انجام شود و مواد آلی در زیر رسوبات مدفون شوند دیگر فرصتی برای اکسید کننده ها باقی نخواهد ماند تا مواد آلی را اکسید کرده و باعث از بین رفتن آنها شوند.پس یکی از شرایط بوجودآمدن نفت سرعت در هنگام رسوب گذاری مواد آلی است.
مواد آلی در لایه های زیرین، در اثر فشار و حرارت ابتدا به کروژن بعد به آسفالت و در پایان به پترولیوم تبدیل می شوند. این فرایندها از لحاظ بیوژنتیک بررسی می شوند و برای تبدیل به انواع مختلف رنج ها، فشار مشخص لازم است.
در این فرایندS,O,W مواد آلی به C,H پترولیوم تبدیل می شوند. یعنی مواد سنگین همچون Sبه H,C تبدیل می شوند یعنی مواد با وزن ویژه بالا به مواد با وزن ویژه پایینتر تبدیل می شوند که با API مشخص می شوند. هر چه S پترولیوم ها کمتر باشد API آن بالاتر خواهد بود.
این فرایند ها در سنگ منشأ اتفاق می افتد. سنگ منشأ معمولاً کم تخلخل است و به علت فشار لایه های بالایی٬ پترولیوم از سنگ منشاء حرکت می کند. این فرایند را مهاجرت اولیه گویند. بعد این مواد از لایه هابه سمت سنگ مخزن حرکت می کنند. این فرایند را مهاجرت ثانویه گویند.
حرکت پترولیوم تا زمانی که هیدروکربن ها به تله بیفتند ادامه خواهد داشت. بدین صورت که این هیدروکربن ها بصورت جاری و یا منقطع از میان لایه های توارا به طرف این تله حرکت می کنند. این تله نفتی، مخزن نام دارد که باید دارای خواص توارایی و تخلخل خوبی باشد.
زمانی که نفت قابل توجهی در مخازن نفتی جمع شود این مکان را میدان نفتی گویند. یک میدان نفتی دارای شرایط خاصی می باشد که مهمترین آنها عبارتند از:

1) پوش سنگ 2) سنگ مخزن 3) سنگ منشاء 4) مهاجرت 5) تله نفتی
1) سنگ مخزن:
سنگی تراوا و متخلخل است علت تخلخل آن برای داشتن فضای کافی برای نگهداری هیدروکربن ها و تراوایی آن برای قدرت عبور و حرکت دهی هیدروکربن ها به طرف چاههای نفت که این از مهمترین عوامل است.
مخازن معمولاً از ماسه سنگ و یا سنگ آهک است. ماسه سنگ دارای تراوای بالایی است و جزء مخازن خوب است. ولی بعضی مخازن از جنس سنگ آهک است با تراوایی بالا علت این امر وجود شکافهایی در این مخازن که باعث شده تراوایی سنگ مخزن ما بالا بیایید. اما به علت اختلاف فاز تر و غیر تر در انواع گوناگون مخازخ٬ کیفیت مخزنی نیز متفاوت خواهد بود. در مخازن ماسه ای فاز تر نفت ولی در آهکی آب می باشد. بنابراین در مخازن ماسه ای نفت با فشار تمایل به خروج از مخزن را داشته در صورتی که این مسئله در مخازن آهکی کاملا متفاوت بوده و این آب است که تمایل دارد با فشار خارج شود.
2) پوش سنگ:
این سنگ برخلاف سنگ مخزن از تراوایی و تخلخل بسیار پایین برخوردار است که مانع فرار نفت از طرف این سنگ است. پوش سنگ می تواند در بالا و یادر اطراف سنگ مخزن وجود داشته باشد و بر اساس نوع مخزن اشکال متفاوتی را دارا باشد. عدم وجود پوش سنگ موجب فرار نفت از سنگ مخزن شده ودر این صورت مخزن نفتی موجود نخواهد بود. در ایران بهترین پوش سنگ در مناطق نفت خیز جنوب سازند گچساران می باشد.
3) تله نفتی:
این همان شکل مخزن است که باعث می شود با کمک پوش سنگ نفت را در خود ذخیره کند. بطور کلی دو نوع مخزن داریم:
الف)‌ ساختمانی ب) استراتیگرافیک ج) مختلط که بسته به تغییرات ساختمانی و یا رخساره ای و سنگ شناسی ازهم متمایزند.
الف) ساختمانی
این مخزن براساس تغییرات ساختمانی درون زمین بوجود می آید. که از مهمترین آنها می توان چین ها و گسل ها را نام برد. که در اینها اتفاقات ساختمانی زمین باعث جابجایی لایه ها و قرار گرفتن سنگ مخزن و پوش سنگ بصورتی می شود که پتانسیل ذخیره نفت را داشته باشند.
ب) استراتیگرافیک
که بر اساس تغییرات رخساره ای و سنگ شناسی بوجود می آید. یعنی گونه های متفاوت سنگ ها در اثر عوامل مختلف به جز ساختمانی در کنار هم قرار خواهند گرفت٬ بگونه ای که شرایط تجمع نفت بوجود آید. «در مخازن باید نیز به مسأله کلوژر باید توجه داشت. بدین معنی که به عنوان مثال طاقدیس ما ممکن است تمامی شرایط ذخیره نفت را داشته باشد ولی بگونه ای باشد که نفت نتواند در آن جمع شود.»


پالایش نفت

نفت خام حاصل از چاه دارای مواد نا خواسته از قبیل آب و جامداتی مانند شن ، قیر و گازهای متان و اتان می‌باشد. برای جداسازی اینگونه عوامل ، آنرا وارد مخازنی می‌کنند تا جامدات موجود در آن ته‌نشین شده و گازهای آن خارج شود. سپس وارد جداساز سانتریفوژی شده که نقش آن جدا کردن تتمه آب ، گاز و جامدات معلق در آن می‌باشد. برای حذف نمکهای معدنی ، نفت را با آب ولرم می‌شویند. آنگاه قسمتی از نفت توسط لوله به پالایشگاه فرستاده شده و قسمتی جهت صدور به بنادر تلمبه می‌شود.

تقطیر
برای تفکیک برش‌های متشکله نفت خام ، عملیات فیزیکی و شیمیایی چندی بر روی آن بعمل می‌آورند تا فرآورده‌های مورد نیاز جامعه امروزی را تولید نمایند. از مهمترین آنها تقطیر جزء به جزء نفت است که در برج تقطیر صورت می‌گیرد. تقطیر جزء به جزء عبارت است از یک سری تبخیر و تبرید که در سینی‌های یک برج استوانه‌ای صورت می‌گیرد. مایعات خالص در فشار محیط ، در دمایی به جوش می‌آیند که در آن دما ، فشار بخار آن برابر فشار محیط گردد. مایعات مخلوط در حدود دمایی که حاصل جمع فشار‌های جزئی عوامل تشکیل دهنده آنها برابر فشار محیط گردد به جوش می‌آید.
در نقطه جوش ، فازهای بخار و مایع در حال تعادل می‌باشند. چنانچه فشار ، کاهش یابد، تبخیر صورت می‌گیرد و در حالت معکوس ، تبرید اتفاق می‌افتد. از فشار بخار برای محاسبه ترکیب گازهای مخلوط در حالت تعادل استفاده می‌شود. وقتی که اجزا تشکیل دهنده یک محلول در برج تقطیر بطور دائم جدا می‌شوند بخارهایی که به سمت بالا حرکت می‌کنند، با ترکیبات فرارتر مایع برگشت کننده که به سمت پایین سرازیر است برخورد کرده و غلیظ‌تر می‌شوند.
انواع تقطیر
تقطیر در فشار محیط: در این روش ، فرآیند تقطیر در فشار محیط صورت می‌گیرد.
تقطیر با بخار آب: وقتی که تقطیر در مجاورت بخار ماده مخلوط نشدنی صورت می‌گیرد، فشار بخار یکی تحت تاثیر دیگری قرار نگرفته و مخلوط در دمایی که مجموع فشارهای جزئی آنها برابر فشار محیط گردد تقطیر می‌شود.
تقطیر در خلا: در این روش ، فرآیند تقطیر در خلاء (در فشار 40 میلی‌متر جیوه) صورت می‌گیرد.
تقطیر در خلاء و بخار: این روش با انتقال گرما توسط بخار آب و با استفاده همزمان از پمپ خلاء جهت کاهش فشار کلی صورت می‌گیرد. بطور کلی این روش دارای اشکالاتی بوده و از آن زیاد استفاده نمی‌شود.
تقطیر در فشار: این روش برعکس تقطیر در خلاء بوده و باعث می‌شود که فرایند تقطیر ، در دمای بیشتری نسبت به آن در فشار محیط صورت گیرد و دمای بالاتر باعث گسسته شدن مولکولهای نفت گردیده و ترکیب آنها را تغییر می‌دهد.
روشهای جدید تقطیر: این روشها شامل یک یا دو مرحله تقطیر در فشار محیط بوده که توسط تقطیر با بخار همراه می‌شود.

نانوتکنولوژی و صنعت نفت

نانوتکنولوژی و صنعت نفت


فناوری نانو می­تواند اثرات قابل توجهی در صنعت نفت داشته باشد، در مطلب زیر بعد از اشاره به برخی از این تأثیرات، تعدادی از کاربردهای فناوری نانو در صنعت نفت بویژه در بحث آلودگی محیط زیست و نیز سنسورهای نانو به طور مختصر معرفی گردیده است:

مقدمه هنگامی که ریچارد اسملی ( Richard Smally ) برندة جایزة نوبل، بالک مینسترفلورسنس را در سال 1985 در دانشگاه رایس کشف نمود،‌ انتظار اندکی داشت که تحقیق او بتواند صنعت نفت را متأثر سازد. سازمان انرژی آمریکا ( DOE ) سرمایه‌گذاری خود را در قسمت فناوری نانو با 62 درصد افزایش داد تا مطالعات لازم در زمینة‌ موادی با نام‌های باکی‌بال‌ها ( Bulky Balls ) و باکی‌تیوب‌ها ( Bulky Tubes )‌ استوانه‌های کربنی که دارای قطر متر می‌باشند صورت گیرد. نانولوله‌های کربنی با وزنی در حدود وزن فولاد، صد برابر مستحکم ­ تر از آن بوده، دارای رسانش الکتریکی معادل با مس و رسانی گرمایی هم ارز با الماس می‌باشند. نانوفیلترها می‌توانند به جداسازی مواد در میدان‌های نفتی کمک کنند و کاتالیست‌های نانو می‌توانند تأثیر چندین میلیارد دلاری در فرآیند پالایش به‌دنبال داشته باشند. از سایر مزایای نانولوله‌های کربنی می‌توان به کاربرد آن‌ها در تکنولوژی اطلاعات (‌ IT ) نظیر ساخت پوشش‌های مقاوم در مقابل تداخل‌های الکترومغناطیسی، صفحه‌های نمایش مسطح، مواد مرکب جدید و تجهیزات الکترونیکی با کارآیی زیاد اشاره نمود.

علم نانو یک تحول بزرگ در مقیاس بسیار کوچک

بسیاری از محققان و سیاستمداران جهان معتقدند که علم نانو می‌تواند تحولات اساسی در صنعت جهانی ایجاد نماید صنعت نفت نیز از پیشرفت این تکنولوژی بهره‌مند خواهد گشت.

علم نانو می‌تواند به بهبود تولید نفت و گاز با تسهیل جدایش نفت وگاز در داخل مخزن کمک نماید. این کار با درک بهتر فرآیندها در سطوح مولکولی امکانپذیر می‌باشد. با توجه به اینکه نانو مربوط به ابعادی در حدود متر می‌باشد، نانوتکنولوژی به مفهوم ساخت مواد و ساختارهای جدید توسط مولکول‌ها و اتم‌ها در این مقیاس می‌باشد.

خوشبختانه کاربردهای عملی نانو در صنعت نفت جایگاه‌ ویژه‌ای دارند. نانوتکنولوژی دیدگاه‌های جدید جهت استخراج بهبودیافتة نفت فراهم کرده است. این تکنولوژی به جدایش موثرتر نفت و آب کمک می‌کند . با افزودن موادی در مقیاس نانو به مخزن می‌توان نفت بیشتری آزاد نمود. همچنین می‌توان با گسترش تکنیک‌های اندازه‌گیری توسط سنسورهای کوچک،‌ اطلاعات بهتری دربارة مخزن بدست آورد.

مواد نانو

صنعت نفت تقریباً در تمام فرآیندها احتیاج به موادی مستحکم و مطمئن دارد. با ساخت موادی در مقیاس نانو می‌توان تجهیزاتی سبکتر، مقاومتر و محکم‌تر از محصولات امروزی تولید نمود. شرکت نانوتکنولوژی GP در هنگ‌کنگ یکی از پیشگامان توسعة کربید سیلیکون، یک پودر سرامیکی در ابعاد نانو می‌باشد.

با استفاده از این پودرها می‌توان مواد بسیار سختی تولید نمود. این شرکت در حال حاضر مشغول مطالعه و تحقیق بر روی سایر مواد مرکب می‌باشد و معتقد است که می‌توان با نانوکریستال‌ها تجهیزات حفاری بادوامتر و مستحکم‌تری تولید کرد. همچنین متخصصان این شرکت یک سیال جدید حاوی ذرات و نانوپودرهای بسیار ریز تولید نموده‌اند که به‌طور قابل توجهی سرعت حفاری را بهبود می‌بخشد. این مخلوط آسیب‌های وارده به دیوارة مخزن در چاه را حذف نموده و قابلیت استخراج نفت را افزایش می‌بخشد.

آلودگی

آلودگی توسط مواد شیمیایی و یا گازهای آلاینده یک مبحث بسیار دشوار در تولید نفت و گاز می‌باشد. نتایج بدست‌آمده از تحقیقات دانشمندان حاکی از آن است که نانوتکنولوژی می‌تواند تا حد مطلوبی به کاهش آلودگی کمک کند. در حال حاضر فیلترها و ذراتی با ساختار نانو در حال توسعه می‌باشند که می‌توانند ترکیبات آلی را از بخار نفت جدا سازند. این نمونه‌ها علیرغم اینکه اندازه‌ای در حدود چند نانومتر دارند، دارای سطح بیرونی وسیعی بوده و قادر به کنترل نوع سیال گذرنده از خود می‌باشند. همچنین کاتالیست‌هایی با ساختار نانو جهت تسهیل در جداسازی سولفید هیدروژن، آب، مونوکسیدکربن، و دی‌اکسید کربن از گاز‌طبیعی در صنعت نفت بکار گرفته می‌شوند. در حال حاضر مطالعاتی بر روی نمونه‌هایی از خاک رس در ابعاد نانو و جهت ترکیب با پلیمرهایی صورت می‌پذیرد که بتوانند هیدروکربن‌ها را جذب نمایند. بنابراین می‌توان باقیمانده‌های نفت را از گل حفاری جدا نمود.

سنسورهای هیدروژن خود تمیز کننده

خواص فوتوکاتالیستی نانوتیوب‌های تیتانیا در مقایسه با هر فرمی از تیتانیا بارزتر می‌باشد، بطوری‌که آلودگی‌های ایجادشده تحت تابش اشعة ماوراء بنفش به‌طور قابل توجهی از بین می‌روند. تا اینکه سنسورها بتوانند حساسیت اصلی خود نسبت به هیدروژن را حفظ نماید. تحقیقات انجام‌گرفته در این زمینه حاکی از آن است که نانوتیوب‌های تیتانیا دارای یک مقاومت الکتریکی برگشت‌پذیر می‌باشند، بطوری‌که اگر هزار قطعه از آن‌ها در مقابل یک میلیون‌ اتم هیدروژن قرار بگیرند، مقاومت الکتریکی آن در حدود یکصد میلیون درصد افزایش می‌یابد.

سنسورهای هیدروژن بطور گسترده‌ای در صنایع شیمیایی، نفت و نیمه‌رساناها مورد استفاده قرار می‌گیرند. از آنها جهت شناسایی انواع خاصی از باکتری‌های عفونت‌زا استفاده می‌گردد. به‌ هر حال محیط‌هایی نظیر تأسیسات و پالایشگاه‌های نفتی که سنسورهای هیدروژن از کاربردهای ویژه‌ای برخوردار می‌باشند، می‌توانند بسیار آلوده و کثیف باشند این سنسورهای هیدروژن نانوتیوب‌های تیتانیا هستند که توسط یک لایة غیرپیوسته‌ای از پالادیم پوشانده شده‌اند. محققان این سنسورها را به مواد مختلفی نظیر اسید استریک ( یک نوع اسید چرب )‌، دود سیگار و روغن‌های مختلفی آلوده نمودند و سپس مشاهده کردند که تمام این آلوده‌کننده‌ها در اثر خاصیت فوتوکاتالیستی نانوتیوب‌ها از بین می‌روند. حد نهایی آلودگی‌ها زمانی بود که دانشمندان این سنسورها را در روغن‌های مختلفی غوطه‌ور ساخته و سنسورها توانستند خواص خود را بازیابند. محققان سنسورها را در دمای اتاق به مقدار هزار قطعه در مقابل یک میلیون ‌اتم هیدروژن در معرض این گاز قرار دادند و مشاهده نمودند که در طرح‌های اولیة سنسور مقاومت الکتریکی آن به میزان 175000 درصد تغییر می‌کند. سپس سنسورها را توسط لایه‌ای به ضخامت چندین میکرون از روغن موتور پوشاندند تا بطور کلی حساسیت آن‌ها نسبت به هیدروژن از بین برود. سپس این سنسورها را در هوای عادی به ‌مدت 10 ساعت در معرض نور ماوراء بنفش قرار دادند و پس از یک ساعت مشاهده نمودند که سنسورها مقدار قابل توجهی از حساسیت خود را بدست آورده‌ و پس از گذشت 10 ساعت تقریباً بطور کامل به وضعیت عادی خود بازگشتند.

علیرغم قابلیت بازگشتی بسیار مناسب این سنسورها نمی‌توانند پس از آلودگی به انواع خاصی از آلوده‌کننده‌ها حساسیت خود را باز یابند برای مثال روغن WQ -40 به علت دارابودن مقداری نمک خاصیت فوتوکاتالسیتی نانوتیوب‌ها را تا حد زیادی از بین می‌برد.

با افزودن مقدار اندکی از فلزات مختلف نظیر قلع، طلا، نقره، مس و نایوبیم، یک گروه متنوعی از سنسورهای شیمیایی بدست می‌آیند. این فلزات خاصیت فوتوکاتالیستی نانوتیوب‌های تیتانیا را تغییر می‌دهند. به هر حال سنسورها در یک محیط غیرقابل کنترل در دنیای واقعی توسط مواد گوناگونی نظیر بخار‌های آلی فرار، دودة کربن و بخارهای نفت و همچنین گرد و غبار آلوده می‌گردند. قابلیت خودپاک‌کنندگی این سنسورها طول عمر آن‌ها را افزایش و از همه مهمتر خطای آنها را کاهش می‌دهد.

سنسورهای جدید در خدمت بهبود استخراج نفت

براساس آخرین اطلاعات چاپ شده توسط سازمان انرژی آمریکا، استخراج نفت در حدود دو سوم از چاه‌های نفت آمریکا اقتصادی نمی‌باشد. با توجه به دما و فشار زیاد در محیط‌های سخت زیرزمینی، سنسورهای قدیمی الکتریکی و الکترونیکی و سایر لوازم اندازه‌گیری قابل اعتماد نمی‌باشند و در نتیجه شرکت‌های استخراج‌ کنندة‌ نفت در تهیة ‌اطلاعات لازم و حساس جهت استخراج کامل و مؤثر نفت از مخازن با برخی مشکلات مواجه می‌باشند.

در حال حاضر محققان در آزمایشگاه فوتونیک دانشگاه صنعتی ویرجینیا در حال توسعة یک‌سری سنسورهای قابل اعتماد و ارزان از فیبرهای نوری جهت اندازه‌گیری فشار، دما، جریان نفت و امواج آکوستیک در چاه‌های نفت می‌باشند. این سنسورها به‌علت مزایایی نظیر اندازة کوچک ،‌ایمنی در قبال تداخل الکترومغناطیسی ، قابلیت کارآیی در فشار و دمای بالا و همچنین محیط‌های دشوار، مورد توجه بسیار قرار گرفته‌اند. از همه مهم‌تر اینکه امکان جایگزینی و تعویض این سنسورها بدون دخالت در فرآیند تولید نفت و باهزینة‌ مناسب فراهم می‌باشد. در حال حاضر عمل جایگزینی و تعویض سنسورهای قدیمی در چاه‌های نفت میلیون‌ها دلار هزینه در پی دارد. سنسورهای جدید از نظر تولید بسیار مقرون ‌به صرفه بوده و اندازه‌گیری‌های دقیق‌تری ارائه می‌دهند.

انتظار می‌رود که تکنولوژی این سنسورها تولید نفت را با ارائه اندازه‌گیری‌های دقیق و قابل اعتماد و کاهش ریسک‌های همراه با اکتشاف و حفاری نفت بهبود بخشد. همچنین سنسورهای جدید به‌علت برخی کاربردهای ویژه نظیر استخراج دریایی و افقی نفت، جایی که بکاربستن سنسورهای قدیمی در چنین شرایطی بسیار مشکل می‌باشد، از توجه ویژه‌ای برخوردارند.

درجه پیچیدگی پالایشگاه و ارزش افزوده فراورده‌ها

انواع پالایشگاه از نظر پیچیدگی

میزان سوددهی یک پالایشگاه، به عوامل زیر بستگی دارد:

“قیمت نفت‌خام و در دسترس‌بودن آن”، “خصوصیات بازار منطقه‌ای”، “ظرفیت فرایندهای پالایشگاه”، “درجه پیچیدگی” و “کارآیی پالایشگاه”. انتخاب درجه پیچیدگی مناسب برای یک پالایشگاه، با توجه به این عوامل تعیین می‌گردد. پالایشگاه‌ها از نظر پیچیدگی به چهار نوع زیر تقسیم می‌شوند:

۱/ ساده (Topping)

در این پالایشگاه نفت‌خام توسط تقطیر اتمسفری، تنها به اجزای تشکیل‌دهنده‌اش تبدیل می‌شود. محصول آن نفتا است و بنزین تولید نمی‌کند.

۲/ Hydroskimming

این نوع پالایشگاه به واحد تقطیر اتمسفری و واحد تغییر شکل نفتا (Reforming) مجهز است. از نوع ساده پیچیده‌تر است و بنزین تولید می‌کند. اما مقدار زیادی سوخت کم‌ارزش که تقاضا برای آن کم است، نیز تولید می‌کند.

۳/ ‍ Cracking

علاوه بر واحدهای ذکر شده در انوع ۱ و ۲ ، شامل واحد تقطیر خلأ و واحد شکست کاتالیستی (FCC) نیز می‌باشد. نسبت به نوع ۲، یک درجه پیچیدگی بیشتری دارد. تولید نفت کوره در آن کاهش یافته و تبدیل آن به فرآورده‌های تقطیر سبک و میان‌تقطیر انجام می‌شود.

۴/ Coking

این پالایشگاه مجهز به فرایندDelayed Coking است که قبل از فرایند شکست کاتالیستی انجام می‌شود. درجه بالای تبدیل نفت ‌کوره به فراورده‌های تقطیر و کک نفت باعث می‌شود نسبت به انواع قبلی بالاترین پیچیدگی را داشته باشد.
برای نشان دادن میزان پیچیدگی یک پالایشگاه، از ضریب پیچیدگی نلسون استفاده‌ می‌کنند که این ضریب برای پالایشگاه Hydroskimming، در حدود ۲، برای پالایشگاه Cracking تا ۵ و برای نوع Coking بالاتر از ۹ تعیین شده‌است.
ضریب پیچیدگی پالایشگاه، اطلاعاتی راجع به پیچیدگی پالایشگاه، هزینه‌های جایگزینی و توانایی ارزش‌افزوده یک پالایشگاه در اختیار قرار می‌دهد؛ ضمن اینکه می‌توان براساس آن پالایشگاه‌های مختلف را طبقه‌بندی کرد.

معرفی فرایندهای پالایش

نوع فرایندهای مورد استفاده در پالایشگاه، در تعیین پیچیدگی آن مؤثر است و هر اندازه واحدهای تبدیل ثانویه یک پالایشگاه، بیشتر باشند درجه پیچیدگی آن نیز بیشتر خواهد بود. در زیر واحدهای تبدیل اولیه و ثانویه و انواع آنها معرفی می‌شوند:

الف) فرایندهای تبدیل اولیه (Primary Conversion Processes)

1. تقطیر اتمسفری
ابتدایی‌ترین فرایند در پالایشگاه، جداسازی ترکیبات تشکیل‌دهنده نفت خام در فشار اتمسفر است که توسط حرارت و سپس متراکم کردن آن با سردکردن انجام می‌شود. این فرایند در واحد CDU یا Conversion Distillation Unit انجام می‌گیرد.

۲/ تقطیر در خلأ
واحد تقطیر در خلأ (VDU) عمل جداسازی ترکیبات نفت‌خام را به اجزای تشکیل‌دهنده، در فشاری پایین‌تر از فشار اتمسفری انجام می‌دهد که در این صورت از تغییر شکل کک جلوگیری می‌شود.
ترکیبی از این دو واحد فرایند (VDU/CDU) نیز برای جداسازی نفت‌خام به ترکیبات اولیه به‌کار می‌رود که محصولات آن LPG،‌ نفتا،‌ کروزن، نفت‌گاز، نفت‌گاز خلأ و ته‌مانده ستون تقطیر خلأ می‌باشد.

ب) فرایندهای تبدیل ثانویه Secondary Conversion Processes
فرایندهایی هستند که روی محصولات حاصل از ستون‌های تقطیر مانند نفت‌کوره و نفتا انجام می‌شوند و محصولات سبک‌تر و با ارزش‌افزوده بالاتر تولید می‌کنند.

۱/ آلکیلاسیون (Alkylation)
این فرایند برای ترکیب شیمیایی ایزوبوتان‌ با هیدورکربن‌های اولفینی سبک (‌از نوع c4و c3)، در حضور کاتالیست‌ اسیدی به‌کار می‌رود. محصول این فرایند آلکیلات (Alkylate)، یکی از بهترین ترکیباتی است که می‌تواند برای به‌سوزی بنزین به آن اضافه شود؛ زیرا یک سوخت تمیز، با محتوی سولفور کم و فاقد ترکیبات اولفینی و آروماتیکی است ضمن اینکه عدد اکتان بالا و فشار بخار پایین هم از خصوصیات آن می‌باشد.
از منظر دیگر،‌ اولفین‌های C3 و C4 برای تولید LPG یا Petroleum Gas Liquified نیز کاربرد دارند. از این‌رو در مناطقی که تقاضا برای LPG بیشتر از مصرف بنزین باشد، فرایند آکلیلاسیون رایج نیست.

۲/ فرایند ” Bottam of the Barrel ”
مجموعه فرایندهایی است که روی مواد ته‌مانده ستون تقطیر خلأ با نقطه‌جوش بالا (ºc565)، محتوی سولفور زیاد و حاوی قیرمعدنی و فلزاتی که در نفت کوره صنعتی یا سنگین یافت می‌‌شود انجام می‌شود؛ اهمیت آن از این جهت است که کاربرد نفت کوره به‌دلیل محدودیت‌های میزان انتشار Sox و Nox به‌شدت در حال کاهش است. چندین روش برای انجام این عمل وجود دارد که شامل فرایندهای زیر است:

Delayed Cracking (1
Visbreaking (2
Resid Desulfurization (3
در ادامه به توضیحات بیشتر درباره آنها نیز می‌پردازیم.

۳/ شکست کاتالیستی (Catalytic Cracking)

در طی این فرایند مولکول‌های هیدروکربن پیچیده، سنگین و بزرگ توسط حرارت و در حضور کاتالیست (بدون افزودن هیدروژن) به مولکول‌های ساده‌تر و سبک‌تر شکسته می‌شوند. با اعمال این فرایند، نفت سنگین (از اجزای‌ تشکیل‌دهنده نفت کوره) به محصولات با ارزش‌تر مثل LPG، بنزین و فراورده‌های میان‌تقطیر تبدیل می‌شود. کاربرد این فرایند که اختصاراً با نام FCC یا Catalytic Cracking Fluidized‌ شناخته می‌شود،‌ در فرایندهای تبدیل ثانویه پالایش گسترده است.
واحدهای FCC، براساس دو الگوی “حداکثر تولید بنزین” و “حداکثر تولید فراورده‌های تقطیری” عمل می‌کنند که انتخاب یکی از آنها به الگوی تقاضای فصلی محصولات بستگی دارد. اخیراً روش “حداکثر تولید اولفین” نیز اهمیت پیدا کرده است که تولید پروپلین، بوتیلن‌ها وLPG به حداکثر میزان خود می‌رسد. دیاگرام زیر مصرف این محصولات را در تولید Oxigenates (موادی که برای به‌سوزی به بنزین اضافه می‌شوند) را نشان می‌دهد.

خوراک فرایند FCC می‌تواند موارد زیر باشد:

- نفت گاز حاصل از تقطیر خلأ(VGO)

- نفت گاز حاصل از تقطیر خلأ که فرایند افزودن هیدروژن نیز روی آن انجام شده باشد.

- مخلوط مواد حاصل از پایین ستون تقطیر (VR) و نفت گاز حاصل از تقطیر خلأ که در این صورت فرایند انجام شده روی آن (Resid FCC) RFCCنامیده می‌شود.

۴/ شکست تأخیری ( Delayed Coking)
یکی از فرایندهایی است که روی مواد ته‌مانده حاصل از ستون‌ تقطیر خلأ انجام می‌شود و نفت‌های سبک‌تر و هم‌چنین کک‌نفت تولید می‌کند. نفت‌ سبک می‌تواند در واحدهای دیگر پالایشگاه به محصولات باارزش‌تر تبدیل شود. کک حاصله، هم به‌عنوان سوخت و هم در ساخت ورق‌های آلومینیومی کاربرد دارد.
این فرایند در تبدیل ته‌مانده‌ها به محصولات سبک‌تر ۰۷ درصد کارآیی دارد در حالیکه فرایندVisbreaking تنها ۰۳ درصد کارآیی دارد.

۵/ تصفیه هیدروژنی (Hydrotreating)
این فرایند برای تصفیه اجزای تشکیل‌دهنده نفت‌خام، در حضور کاتالیست‌ها و مقادیر معتنابهی از هیدروژن به‌کار می‌رود. این فرایند در سولفور‌زدایی، نیتروژن‌زدایی و تبدیل اولفین‌ها به پارافین‌ها مؤثر است.

۶/ اصلاح یا تغییر شکل‌دادن (Reforming)
در این فرایند، هیدروکربن‌های خطی به آروماتیکی تغییر شکل می‌دهند که در بنزین این شکل مناسب‌تر است. از آنجا که کاتالیست‌ این فرایند، حاوی پلاتین می‌باشد خوراک آن باید عاری از سولفور باشد.
برای تولید آروماتیک‌ها در صنعت پتروشیمی نیز از این فرایند استفاده می‌شود.

۷/ شکست حرارتی (Thermal Cracking)
در این فرایند از گرما و فشار برای شکستن مولکول‌های سنگین و تولید مولکول‌های سبک‌تر (‌با خوراک نفت کوره)‌ استفاده می‌شود. این فرایند شامل Visbreaking، Delayed Coking و فرایندهای مشابه می‌باشد.

۸/ Vis-breaking
یک فرایند شکست حرارتی ملایم است که از نفت‌کوره و ته‌مانده‌های حاصل از ستون تقطیر اتمسفریک و خلأ،‌ در دمای ملایم، محصولات سبک و با ویسکوزیته پایین تولید می‌کند و در مناطقی که هنوز نفت‌کوره سنگین مصرف بالا دارد، رایج است. به‌طور‌کلی باتوجه به مسائل زیست‌محیطی، اهمیت آن در سطح جهانی در حال کاهش است.

شیرین‌سازی (sweetening)
محصولات نفت باید عاری از ترکیبات سولفور (مرکاپتان‌ها) باشند، به‌دلیل اینکه در حین سوخت، گازهای نامطلوب Sox تولید می‌کنند. در فرایند ذکر شده توسط اکسیداسیون، سولفور‌زدایی انجام می‌‌شود که به آن Merox یاMercaptan Oxidation گفته می‌شود. این فرایند در مورد LPG اشباع و غیراشباع، بنزین و کروزن کاربرد دارد.

جمع‌بندی:

به‌کار گیری فرایندهای تبدیل ثانویه با کارآیی بالا و بالا بودن درجه پیچیدگی پالایشگاه، مزیت‌های زیر را در‌پی دارد:

۱/ انعطاف‌پذیری لازم در فرایند نفت‌خام با کیفیت‌های متنوع از جمله نفت‌خام نامرغوب، ‌ترش و سنگین

۲/ توانایی تولید درصد بیشتری از محصولات باارزش مثل LPG، فراورده‌های تقطیری سبک و میان‌تقطیر و تولید درصد کمی از محصولات سنگین و نفت‌کوره که در نتیجه آن ارزش‌افزوده بالاتری هم حاصل می‌شود.

۳/ توانایی تولید محصولات (‌از جمله بنزین و گازوئیل)‌ با کیفیت بالا

باتوجه به آنچه گفته شد تعیین ضریب پیچیدگی پالایشگاه‌های کشور در ارتقای نوع آن‌ها، هم‌چنین انتخاب خوراک مناسب و نهایتاً سوددهی می‌تواند مؤثر باشد.

بنزین

یکی از مشتقات نفت می‌باشد که در پالایشگاه نفت تولید می‌گردد و برای سوخت خودروهای سبک مورد استفاده قرار می‌گیرد.

بنزین که در انگلیسی با نام های گازولین " و پترول شناخته می شود مایعی مشتق شده از نفت می باشد که عمدتا شامل هیدروکربن ها است. همچنین حاوی بنزن می باشد ؛ و به عنوان سوخت در موتور سوخت داخلی مورد استفاده قرار می گیرد.

اکثر کشورهای مشترک المنافع به استثنای کانادا از عبارت "پترول " (مخفف جوهر نمک ) استفاده می کنند. عبارت گازولین عمدتا در آمریکای شمالی به کار می رود که معمولا در کاربردهای محاوره ای گاز گفته می شودکه باید بتوان در زمینه کاربرد آن را از سوختهای گازی مورد استفاده در موتورهای سوخت داخلی از قبیل گاز نفت مایع کاملا متمایز کرده عبارت mogas مخفف “Motor gasoline” بوده و از سوخت اتومبیل و بنزین هواپیما یا avgas متمایز است. کلمه بنزین همچنین در انگلیسی برتانیایی استفاده می شود که به یک مشتق متفاوت نفت که در چراغ به کار می رود اشاره دارد. به هر حال این مورد استفاده امروزه رایج نیست. در لجهه اکثر اسپانیولی های آمریکایی الاصل کلمه gasoline وجود دارد که از آمریکای شمالی گرفته اند.

تجزیه شیمیایی :

بنزین در پالایشگاه های نفت تولید می شود. ماده ای که توسط تقطیر از نفت خام جدا می شود بنزین طبیعی نام دارد که ویژگی های مورد نیاز را برای موتورهای پیشرفته ( به طور خاص نرخ اکتان پایین را ببینید.) نداشته اما بخشی از مخلوط را تشکیل خواهد داد. توده بنزین شامل هیدروکربن های دارای 5 تا 7 عدد اتم کربن در هر مولکول می باشد.

بسیاری از این هیدروکربن ها مواد خطرناکی بوده و قوانین مرتبط با آنها توسط “OSHA” وضع می شوند. MSDS برای بنزین بدون سرب حداقل پانزده ماده شیمیای خطرناک را نشان می دهد که در مقادیر حجمی مختلف بنزین از 5 تا 35 درصد وجود دارد. این مواد شامل بنزین بالاتر از 5درصد حجمی ، تولوئن بالاتر از 35درصد حجمی ، نفتالن بالاتر از 1درصد حجمی 1 و 2و 4- تری متیل بنزن بالاتر از 7درصد حجمی ، MTBE بالاتر از 18 درصد حجمی و حدود 10 ماده دیگر می باشد. (رجوع کنید به[5])

فرآورده پالایشگاه های مختلف با هم آمیخته و بنزین را با خواص مختلف می سازد بعضی ازفرایندهای مهم عبارتند از :

( عبارات به کار رفته در اینجا همیشه عبارات شیمیایی صحیح نیستند. اینها نوعا" از قدیم مرسوم بوده اما عبارات معمول مورد استفاده در صنعت نفت هستند.اصطلاحات دقیق این محصولات بسته به نوع شرکت نفت و کشور مورد نظر متفاوت است.)

به طور کلی بنزین معمولی عمدتا مخلوطی از پارافین ها آلکان ها ، نفتن ها سیکلو آلکان ها آروماتیک ها و اولفین ها آلکن ها .نسبت های دقیق به عوامل زیر بستگی دارد :

  • پالایشگاه نفت که سازنده بنزین است از این نظر که پالایشگاه ها یکسری واحدهای پردازش مشابه دارند.
  • نفت خام مورد استفاده پالایشگاه در یک روز خاص.
  • درجه بنزین و به طور خاص عدد اکتان آن.

امروزه بسیاری از کشورها در موردترکیبات آروماتیک بنزین به طور عام بنزن به طور خاص و ترکیب اولفین آلکن محدودیت هایی را اعمال می کنند. تقاضای اجزای تشکیل دهنده پارافین آلکان خالص با عدد اکتان بالا از قبیل آلکیلات در حال افزایش است و پالایشگاه ها مجبور به افزودن واحدهای پردازش جهت کاهش محتوای بنزن هستند.

بنزین همچنین شامل مواد آلی دیگری نیز می باشد ؛ از قبیل اترهای آلی (که با هدف به آن افزوده شده ) به اضافه مقدار کمی ناخالصی ، اختصاصا ترکیبات گوگرد از قبیل دی سولفیدها و تیوفن ها بعضی از ناخالصی ها برای مثال تیول ها و سولفید هیدروژن به علت ایجاد خوردگی در موتورها باید حذف شوند.

فراریت:

بنزین از نفت دیزل جت – A یا کروسن نه تنها به خاطر اجزای تشکیل دهنده اصلی بلکه به دلیل افزاینده ها که به آن افزوده می شود بیشتر است. فراریت مطلوب بستگی به دمای محیط دارد : در هوای گرم تر اجزایی از بنزین مورد استفاده قرار می گیرند که وزن مولکولی بالاتر وبنابراین فراریت کمتر دارند. در هوای سرد برای اینکه ماشین شروع به کار کند از اجزای با فراریت بسیار کم استفاده می شود. در هوای گرم فراریت اضافی باعث اشباع شدن بخار می شود که در این حالت احتراق رخ نمی دهد. در استرالیا محدوده فراریت هر ماه تغییر می کند وبرای هر مرکز توزیع اصلی تفاوت دارد. اما اکثر کشورها به سادگی محدوده تابستانی زمستانی و حتی چیزی بین این دو را دارند در ایالات متحده برای کاهش نشر هیدروکربن هایب سوخته نشده مراکز شهری بزرگی تاسیس می شود. در شهرهای بزرگ از بین دیگر خواص بنزین بنزین با فرمولاسیون جدید که کمتر تبخیر می شود مورد نیاز است.

استانداردهای فراریت در موارد اضطراری که کمبود بنزین وجود دارد کمتر رعایت می شوند ( و درنتیجه عناصر آلاینده بنزین در جو زمین افزایش می یابد). برای مثال در تاریخ 31آگوست 2005 ایالات متحده در پاسخ به هاریکن کاترینا مجوز فروش بنزین بافرمولاسیون قبلی را در بعضی از نواحی شهری صادر کرد که باعث شد که استفاده از بنزین زمستانی زودتر از حدمعمول انجام شود. طبق دستور ریاست EPA استفان جانسون این نادیده انگاری استانداردهای سوخت از تاریخ 15 سپتامبر 2005 اجرا شد. [6] اگر چه استاندارهای کاهش یافته فراریت باعث تخریب لایه اوزون و آلودگی هوا می شوند بنزین دارای فراریت بالاتر (که در مقایسه با بنزین با فراریت پایین افزاینده های کمتری دارد) ذخیره بنزین کشور را به طور محسوس افزایش می دهد چرا که پالایشگاه های نفت می توانند با سهولت بیشتر محصول خود را تولید کنند.

عدد اکتان:

مهمترین خاصیت بنزین عدد کتان آن است که نشان دهنده میزان مقاومت بنزین در برابر افنجار زودهنگام در کاربراتور موتور است که باعث ضربه زدن به موتور می شود. این عدد نسبت به مخلوط 2 و 2 و 4- تری متیل پنتان لیزومر اکتان و n - هپتان اندازه گیری می شود. معیارهای قراردادی مختلفی برای بیان عدد اکتان وجود دارد بنابراین بسته به سیستم مورد استفاده سوخت های مشابه ممکن است اعداد اکتان متفاوت داشته باشند.

سلامت:

بسیاری از هیدروکربن های غیر آلیفاتیک که به طور طبیعی در بنزین موجودند (مخصوصا هیدروکربن های آروماتیک مانند بنزن ) مشابه بسیاری از افزاینده های ضد ضربه سرطان زا هستند. به این دلیل هرگونه نشت بنزین در مقیاس بزرگ که باعث تهدید سلامت عموم و محیط شود. خطرات اصلی این نشت ها ناشی از وسایل نقلیه نیست بلکه از تصادف کامیون های حامل بنزین می باشد که طی این رخداد بنزین از تانکرهای ذخیره نشت می شود. به دلیل وجود این خطر امروزه بر روی محل نصب اکثر تانکر های ذخیره ( زیرزمینی ) محاسبات گسترده ای انجام می گیرد تا هرگونه نشت مشخص شده و از آن جلوگیری شود. با توجه به اینکه بنزین نسبتا فرار ( بدین معنی که زود تبخیر می شود ) است باید آنها را در تانکرهایی ذخیره کرد و در صورت حمل و نقل با وسایل نقلیه آنها را کاملا مهرو موم نمود. فراریت بالای بنزین همچنین به این معناست که برخلاف سوخت دیزل که در شرایط هوایی سرد به آسانی آتش می گیرد یک سیستم تهویه مناسب برای اطمینان از اینکه سطح فشار در داخل و بیرون یکسان است مورد نیاز می باشد. بنزین به طور خطرناک با مواد شیمیایی معمول و خاصی وارد واکنش می شود. برای مثال بنزین بلور Drano و هیدروکسید سدیم طی یک احتراق خود به خود یا هم واکنش می دهند.

بنزین همچنین یکی از منابع گازهای آلاینده است. حتی بنزینی که دارای سرب یا گوگرد یا دیگر ترکیبات شیمیایی نباشد اگزوز موتور ای که در حال حرکت است تولید دی اکسید کربن , اکسیدهای نیتروژن و مونوکسید کربن می کند. علاوه بر این بنزین نسوخته طی تبخیر از تانک در جو با نور خورشید واکنش داده و تولید مه دود فتوشیمیایی می کند. افزودن اتانول فراریت بنزین را افزایش می دهد.

در صورت استفاده ناصحیح از بنزین به عنوان ماده ای که قابل استنشاق است بنزین سلامت رابه خطر می اندازد. برای بسیاری از مردم استنشاق بنزین معمول ترین راه رسیدن به حالت مستی است و در بسیاری از جوامع فقیرتر از قبیل بومی های استرالیا به صورت همه گیر اپیدمی در آمده است. اپال توسط پالایشگاه کوینانا BP در استرالیا توسعه یافته و تنها شامل 5درصد ترکیبات آروماتیک ( برخلاف حد معمولش که 25درصد است) می باشد که در نتیجه استنشاق آن اثرات زیان بارکمتری متوجه فرد است.

چگونه گاز طبیعی قابل مصرف می شود

چگونه گاز طبیعی قابل مصرف می شود

پردازش گازطبیعی

گازطبیعی که از زیرزمین تا سرچشمه بالا آورده می شود کاملا با گازطبیعی مصرف کنندگان متفاوت است. اگرچه پردازش گازطبیعی در بسیاری از جنبه ها ساده تر از پردازش و پالایش نفت خام است، اما به اندازه نفت، پردازش آن قبل از استفاده توسط مصرف کنندگان ضروری است.گازطبیعی که توسط مصرف کنندگان استفاده می شود، بیشتر از متان تشکیل شده است. اگرچه گازی که در سرچشمه یافت می شود و بیشتر ترکیبات آن متان است نیاز به پردازش زیادی ندارد و خالص است.گازطبیعی خام از سه نوع چاه استخراج می شود: چاه های نفت، چاه های گاز و چاه های متراکم. گازطبیعی که از چاه های نفت استخراج می شود عموما به نام «گاز همراه» شناخته می شود. این گاز می تواند جدا از نفت در تشکیلات وجود داشته باشد (گاز آزاد) یا این که در نفت خام حل شده باشد (گازمحلول).

گازطبیعی که از چاه های گاز و متراکم می آید، که در آن هیچ نفت خامی وجود ندارد یا اگر وجود دارد بسیار اندک است و با نام «گاز همراه» شناخته می شود. چاه های گاز عموما گازطبیعی خام تولید می کنند در حالی که چاه های متراکم گازطبیعی آزاد به همراه یک هیدروکربن نیمه مایع متراکم تولید می کنند. منبع گازطبیعی هرچه که باشد، وقتی از نفت خام (در صورت وجود) جدا شد، معمولا در ترکیب با دیگر هیدروکربن ها وجود دارد (عمدتا اتان، پروپان، بوتان و پنتانز). به علاوه، گازطبیعی خام حاوی بخار آب، سولفید هیدروژن (S2(H دی اکسیدکربن، هلیوم، نیتروژن و دیگر اجزا است.پردازش گازطبیعی شامل جداسازی تمام هیدروکربن ها و مایعات مختلف از گازطبیعی خالص است. به منظور تولید آن چه که گازطبیعی خشک به کیفیت خطوط لوله نامیده می شود، خطوط لوله اصلی حمل ونقل اغلب مقرراتی دارند که براساس آن گازطبیعی هنگام حمل ونقل با خطوط لوله باید ترکیبات و کیفیت خاصی داشته باشد. این بدین معناست که قبل از حمل ونقل، گازطبیعی باید تصفیه شود.

یا این که در مراحل تصفیه و پالایش، اتان، پروپان، بوتان و پنتانز باید از گازطبیعی جدا شوند،اما این بدین معنا نیست که آن ها ضایعات هستند.در واقع، هیدروکربن های همراه که تحت عنوان «مایعات گازطبیعی» شناخته می شوند (Natural Gas Liquids) NGL می توانند با محصولات حاصل از پردازش گازطبیعی بسیار ارزشمند باشند. NGL ها شامل اتان، پروپان، بوتان، ایزوبوتان و بنزین طبیعی می باشند. این NGL ها به طور جداگانه فروخته می شوند و مصارف متفاوتی دارند، مثل افزایش بازیافت نفت در چاه های نفت، فراهم آوردن موادخام برای پالایشگاه های نفت یا نیروگاه های پتروشیمی به عنوان منابع انرژی.

در حالی که بعضی از اوقات پردازش موردنیاز می تواند در سرچشمه یا نزدیکی آن (پردازش حوزه) انجام شود،پردازش کامل گازطبیعی در یک نیروگاه پردازش گازطبیعی که معمولا در منطقه تولیدی گازطبیعی قرار دارد، انجام می شود.گازطبیعی استخراج شده به این نیروگاه های پردازش از طریق یک شبکه خطوط لوله جمع آوری انتقال داده می شود. این خطوط لوله قطر کوچک و فشار کمی دارند.یک سیستم جمع آوری پیچیده می تواند از لوله تشکیل شود که نیروگاه پردازش را به بیش از صدچاه در منطقه ارتباط می دهد. براساس گزارش انجمن گاز آمریکا در سال 2000 حدود 36100 مایل سیستم گردآوری خط لوله در آمریکا وجود داشت.علاوه بر پردازش انجام شده در سرچشمه و در نیروگاه های پردازش متمرکز، برخی پردازش های نهایی نیز در «نیروگاه های دو منظوره استخراج» انجام می شود. این نیروگاه ها بر روی سیستم های اصلی خط لوله قرار دارند. اگرچه گازطبیعی که به این نیروگاه ها می رسد آماده کیفیت خط لوله است، در موارد خاص بازهم مقادیر بسیار کمی از NGLها در آن جا وجود دارد که دراین نیروگاه ها از گازطبیعی جدا می شوند.

عمل واقعی پردازش گازطبیعی به گازطبیعی خشک، کیفیت خط لوله می تواند بسیار پیچیده باشد، اما معمولا شامل چهار پردازش اصلی است تا ناخالصی های مختلف از آن جدا بشود:

•از میان برداشتن نفت و گاز متراکم
•از میان برداشتن آب
•جداسازی مایعات گازطبیعی
•از میان برداشتن دی اکسید کربن و سولفور
علاوه بر چهار مرحله پردازش بالا، هیترها و ساینده هایی معمولا در سرچشمه یا در نزدیکی آن نصب می شوند. ساینده ها در درجه اول برای برداشتن شن و دیگر ناخالص های بزرگ به کار می روند. هیترها تضمین می کنند که درجه حرارت گاز زیاد پایین نیفتد. گازطبیعی که حاوی حتی مقادیر بسیار کمی از آب باشد، هنگام افت درجه حرارت، هیدرات های گازطبیعی در آن شکل می گیرند. این هیدارت ها دارای ترکیبات جامد یا نیمه جامدی می باشند که شبیه کریستال های یخ هستند. با شکل گیری این هیدارت ها در گازطبیعی مانعی در راه، عبور گازطبیعی از میان دریچه ها و سیستم های گردآوری ایجاد می شود. برای کاهش تشکیل هیدرات ها، واحدهای گرمایی با سوخت گازطبیعی عموما در امتداد خط لوله جمع آوری نصب می شوند جایی که به نظر می رسد هیدارت ها ممکن است تشکیل شوند.

• از میان برداشتن نفت و گاز متراکم

به منظور پردازش و حمل ونقل گازطبیعی محلول همراه، گاز باید از نفتی که در آن حل شده است، جدا شود. این جداسازی گازطبیعی از نفت بیشتر با ابزاری که در سرچشمه یا نزدیکی آن نصب می شود، انجام می شود. پردازش عملی برای جدا کردن نفت از گازطبیعی استفاده می شود و ابزاری که برای این کار استفاده می گردد می تواند به طور گسترده ای فرق کند. اگرچه گازطبیعی خشک کیفیت خط لوله در مناطق جغرافیایی مختلف در عمل یکسان هستند، اما گازطبیعی خام از مناطق مختلف ممکن است ترکیبات و نیازمندی های جداسازی مختلف داشته باشند. در بسیاری از موارد، گازطبیعی در نفت زیرزمینی به علت فشاری که تشکیلات تحمل می کند محلول است. وقتی این نفت و گازطبیعی تولید می شود، ممکن است به علت کاهش فشار خودبه خود گاز از نفت جدا شود. مثل بازکردن سر قوطی نوشابه که به محض بازشدن مقداری از گازهای محلول در نوشیدنی آزاد می شود.در این موارد، جداسازی نفت و گاز کاملا آسان است و این دو هیدروکربن برای پردازش بیشتر به راه های مجزایی فرستاده می شوند. ابتدایی ترین نوع جدا کننده «جدا کننده سنتی» نامیده می شود.این دستگاه شامل یک مخزن در بسته شده است جایی که نیروی گرانش برای جدا کردن مایعات سنگین تر مثل نفت و گازهای سبک تر مثل گازطبیعی به کار می رود.

در موارد خاص اگرچه ابزار آلات تخصصی خاص برای جداسازی نفت از گازطبیعی مورد نیاز است، یک نمونه از این نوع ابزار آلات «جدا کننده با درجه حرارت پایین» ( LTX) است. این دستگاه بیشتر برای چاه های تولیدی گاز فشار بالا با نفت خام یا تراکم سبک به کار می رود. این جدا کننده ها از متمایزهای فشار برای خنک کردن گازطبیعی مرطوب و جدا کردن نفت وگاز متراکم استفاده می کنند. گاز مرطوب وارد جدا کننده با درجه حرارت پایین می رود، سپس این گاز به درون جدا کننده با درجه حرارت پایین از طریق یک مکانیسم مسدود جریان پیدا می کند که گاز را هنگام ورود به جدا کننده منبسط می کند.

این انبساط سریع گاز امکان پایین آوردن درجه حرارت در جدا کننده را فراهم می کند. بعد از جدا کردن مایع، گاز خشک به «تعویض کننده گرما» برمی گردد و توسط گاز مرطوب ورودی گرم می شود. با تغییر فشار گاز در بخش های مختلف جدا کننده امکان تغییر درجه حرارت نیز پدید می آید که باعث می شود نفت و آب از جریان گاز مرطوب جدا شوند. این ارتباط اولیه با درجه حرارت بالا می تواند برای استخراج گاز از یک جریان مایع نفت استفاده شود.از میان برداشتن آبعلاوه بر جداسازی نفت و دیگر گازهای متراکم از جریان گاز مرطوب، لازم است که بیشتر آب همراه با گاز از آن جدا شود. بیشتر آب آزاد همراه با گازطبیعی استخراج شده توسط روش های جداسازی ساده در سرچشمه یا در نزدیکی آن از گاز جدا می شود. اگر چه برداشتن بخار آب موجود در محلول گازطبیعی نیازمند عملیات پیچیده تری است. این عملیات شامل رطوبت زدایی از گازطبیعی است که معمولا در دو مرحله انجام می شود. مرحله جذب با گرفتن بخار آب توسط ماده نم زدا انجام می شود. مرحله (جذب سطحی) زمانی اتفاق می افتد که بخار آب متراکم و در سطح جمع آوری می شود.

• نم زدایی یا رطوبت زدایی گلایکول

یک نمونه از نم زدایی جذب (absorption) تحت عنوان نم زدایی گلایکول شناخته می شود. در این فرایند، یک مایع نم زدای خشک کننده برای جذب بخار آب از جریان گاز استفاده می شود. گلایکول، ماده اصلی در این فرایند، شباهت شیمیایی به آب دارد. این بدین معناست که وقتی در تماس با یک جریان گازطبیعی حاوی آب قرار می گیرد، گلایکول آب را از جریان گاز می رباید.

اساسا نم زدایی گلایکول شامل استفاده از حلال گلایکول معمولا دی اتیل گلایکول (DEG) یا تری اتیل گلایکول (TEG) می باشد که در یک تماس دهنده با جریان گاز مرطوب تماس پیدا می کند. حلال گلایکول آب را از گاز مرطوب جذب می کند. وقتی جذب شد، ذرات گلایکول سنگین تر می شوند و در انتهای تماس دهنده جمع می شوند جایی که آن ها به بیرون از نم زدا برده می شوند. گازطبیعی که بدین شکل بیشتر ترکیبات آب خود را از دست می دهد، به بیرون از نم زدا انتقال می یاید. حلال گلایکول به همراه تمام آبی که از گازطبیعی جذب کرده است از میان یک دیگ بخار تخصص یافته که به منظور بخار کردن آب باقیمانده طراحی شده است، عبور می کند. وقتی آب موجود در این دیگ بخار به حرارت 212درجه فارنهایت می رسد بخار می شود، در حالی که گلایکول تا 400 درجه فارنهایت بخار نمی شود. این تفاوت درجه جوش جدا کردن آب از محلول گلایکول را آسان می سازد و امکان استفاده دوباره از آن در فرایند نم زدایی را فراهم می کند.نوآوری جدید در این فرایند، اضافه کردن خازن های جدا کننده فلاش تانک است. علاوه بر جذب آب از جریان گاز مرطوب، محلول گلایکول گاه گاهی با خود مقادیر کوچکی از متان و دیگر ترکیبات موجود در گاز مرطوب حمل می کند. درگذشته این متان به سادگی از دیگ بخار خارج می شد. علاوه بر هدربخشی از گازطبیعی که استخراج شده بود، این خروج گاز به آلودگی هوا و تأثیر گاز گلخانه ای کمک می کرد. به منظور کاهش میزان متان و دیگر ترکیبات هدر رفته، خازن های جدا کننده فلاش تانک استفاده می شوند تا این ترکیبات را قبل از رسیدن محلول گلایکول به دیگ بخار از محلول جدا کنند.

اساسا یک جدا کننده فلاش تانک شامل وسیله ای است که فشار محلول گلایکول را کم می کند و به متان و دیگر هیدروکربن ها اجازه بخار شدن (فلاش) می دهد. محلول گلایکول سپس به دیگ بخار می رود که ممکن است با خازن های خنک کننده هوا یا آب مجهز شود. این کار برای جذب هرگونه ترکیبات ارگانیک باقی مانده است که ممکن است در محلول گلایکول باقی مانده باشد.این سیستم ها در عمل نشان داده اند که می توانند 90 تا 99 درصد از متان را بازیافت کنند.

• نم زدایی ماده خشک کننده جامد

نم زدایی ماده خشک کننده جامد اولین شکل نم زدایی گازطبیعی با استفاده از جذب سطحی است و معمولا شامل دو یا بیشتر برج جذب سطحی است که با یک ماده خشک کننده جامد پرشده است. مواد خشک کننده معمولی شامل آلومینیوم یا یک ماده ژل مانند سیلیکا دانه دانه است.گازطبیعی مرطوب از میان این برج ها، از بالا تا پایین عبور می کنند. همان طوری که گازطبیعی از اطراف ذرات ماده خشک کننده عبور می کند آب به سطح ذرات ماده خشک کننده می چسبد با عبور از میان کل بستر خشک کننده تقریبا تمام آب به درون ماده خشک کننده جذب می شود و اجازه می دهد که گاز خشک از انتهای برج خارج شود.نم زداهای ماده خشک کننده جامد معمولا مؤثرتر از نم زداهای گلایکول هستند و معمولا به عنوان یک نوع از سیستم دو منظوره در طول خطوط لوله گازطبیعی نصب می شوند. این انواع از سیستم های نم زدایی برای مقادیر زیاد گاز تحت فشار بالا بسیار مناسب هستند و معمولا در انتهای یک خط لوله در یک ایستگاه کمپرسور قرار دارند. در این مورد به دو برج یا بیشتر نیاز است چون بعد از دوره خاصی از استفاده ماده خشک کننده در یک برج خاص با آب اشباع می شود. برای تولید دوباره ماده خشک کننده، یک هیتر با درجه حرارت بالا برای گرم کردن گاز تا درجه حرارت بالا استفاده می شود. عبور این گاز گرم شده از میان یک بستر خشک کننده اشباع شده آب موجود در آن را در برج جاذب بخار می کند و آن را خشک می کند و امکان نم زدایی بیشتر گازطبیعی را فراهم می کند.

در بسیاری از موارد مایعات گازطبیعی (NGL) ارزش بیشتری نسبت به محصولات جدا شده دارند و بنابراین اقتصادی و به صرفه است که آنها را در جریان گاز جدا کنیم. جدا کردن مایعات گازطبیعی معمولا در یک نیروگاه پردازش نسبتا متمرکز انجام می شود و از تکنیک های مشابه به آن هایی که در نم زدایی گازطبیعی به کار می رفت استفاده می شود.دو قدم اولیه برای عمل آوری مایعات گازطبیعی وجود دارد. اول مایعات باید از گازطبیعی استخراج شود دوم این مایعات گازطبیعی باید از خودشان جدا شوند و به اجزای پایه شان تبدیل شوند.

• استخراج NGL

دو تکنیک اساسی برای جداسازی NGLها از جریان گازطبیعی وجود دارد. روش جذب و روش انبساطی کریوژنیک. این دو فر ایند می توانند تا 90درصد از کل مایعات گازطبیعی را تولید کنند.

• روش جذب

نفت جاذب از نظر ترکیب با NGLها شباهت دارد مثل گلایکول که در ترکیب با آب شباهت داشت. قبل از این که نفت هیچ گونه NGL را بربگیرد با نام نفت جاذب فقیر نامیده می شود. هنگامی که گازطبیعی از میان یک برج جذب عبور کند در تماس با نفت جاذب، مایعات همراهش در این جاذب حل می کند. «نفت جاذب غنی» در این موقعیت حاوی NGL یا همان مایعات گاز است که در برج جذب از انتها قرار دارد. این ماده در این مرحله ترکیبی از نفت جاذب،پروپان، بوتان، پنتانز و دیگر هیدروکربن های سنگین تر است. نفت غنی به دستگاه های تقطیر نفت فقیر تغذیه می شود. این فرایند امکان بازیافت حدود 75 درصد از بوتان 85 تا 90 درصد از پنتانز و ملکول های سنگین تر از جریان گازطبیعی را فراهم می کند.فرایند جذب اولیه که در بالا توضیح داده شد می تواند برای افزایش تأثیرش اصلاح شود یا استخراج NGLهای خاص را هدف گیرد. در روش جذب نفت سرد شده جایی که نفت فقیر از طریق سرد سازی سرد می شود، بازیافت پروپان می تواند تا 90درصد باشد و حدود 40 درصد از اتان می تواند از جریان گازطبیعی استخراج شود. استخراج دیگر مایعات سنگین تر در این روش نزدیک به صد درصد است.

• فرایند انبساط کریوژنیک

مراحل کریوژنیک هم چنین برای استخراج NGLها از گازطبیعی به کار می رود. در حالی که روش های جذب می تواند تقریبا تمام NGLهای سنگین تر را استخراج کند، هیدروکربن های سبک تر مثل اتان اغلب در بازیافت از جریان گازطبیعی مشکل دارند. در موارد خاص، به صرفه تر و اقتصادی تر است تا NGLهای سبک تر را در جریان گازطبیعی باقی بگذاریم. اگر استخراج اتان و دیگر هیدروکربن های سبک تر به صرفه باشد، فرایند کریوژنیک برای میزان بازیافت بالا مورد نیاز است.اساسا فرایند کریوژنیک شامل پایین آوردن درجه حرارت گاز تا حدود 120- درجه فارنهایت است. راه های متفاوتی برای سرد کردن گاز تا این درجه حرارت وجود دارد. اما یکی از مؤثرترین آن ها به عنوان فرایند انبساطی توربو شناخته می شود. در این فرایند، سرد کننده های خارجی برای سرد کردن جریان گاز استفاده می شوند که باعث کاهش سریع دمای گاز می شوند. این افت سریع درجه حرارت اتان و دیگر هیدروکربن های موجود در جریان گاز را متراکم می کند در حالی که متان در شکل گاز باقی می ماند. این فرایند اجازه بازیافت حدود 90تا 95 درصد از اتان را از گازطبیعی می دهند. به علاوه وقتی جریان گازطبیعی به درون فشرده سازی ضایعات متان گازی شکل توسعه پیدا می کند انبساط توربین قادر به تبدیل برخی انرژی آزاد شده است، بنابراین هزینه های صرفه جویی انرژی با استخراج اتان همراه است.استخراج NGLها از جریان گازطبیعی هم گازطبیعی خالص تر و پاک تری تولید می کند و هم هیدروکربن های ارزشمندتر را جدا می کند.

• شکنش کردن مایعات گازطبیعی

زمانی که NGLها از جریان گازطبیعی جدا شدند، باید به اجزای تشکیل دهنده شان که مفید هستند تجزیه و شکسته شوند. یعنی جریان ترکیب NGLهای مختلف باید جدا شوند. فرایندی که برای انجام این کار استفاده می شود، شکنش کردن نامیده می شود. کارهای شکنش براساس نقاط جوش مختلف هیدروکربن های مختلف در جریان NGL پایه گذاری شده است. اساسا شکنش کردن در مراحلی شامل جوشاندن هیدروکربن ها یک به یک اتفاق می افتد. کل فرایند شکنش به مراحلی تقسیم می شود که با برداشتن NGLهای سبک تر از جریان گاز آغاز می شود. اعمال شکنش خاص در ترتیب زیر استفاده می شوند:

•جدا کردن اتان: در این مرحله اتان از جریان NGL جدا می شود.

•جدا کردن پروپان: مرحله بعدی پروپان را جدا می کند.

•جدا کردن بوتان: این مرحله بوتان را به حد جوش می رساند و پنتانز و هیدروکربن های سنگین تر را در جریان NGL باقی می گذارد.

•جدا کردن ایزو بوتان: این مرحله بوتان معمولی و ایزو را جدا می کند.

با شروع کار از هیدروکربن های سبک تر تا هیدروکربن های سنگین تر امکان جداسازی مایعات مختلف به سادگی وجود دارد.

• برداشتن دی اکسیدکربن و سولفور

علاوه بر جداسازی آب، نفت و NGLهای دیگر، یکی از مهم ترین قسمت های پردازش گاز شامل جداسازی دی اکسید کربن و سولفور است. گازطبیعی بعضی چاه ها حاوی مقادیر مهمی از سولفور ودی اکسیدکربن است. این گازطبیعی به علت بوی زننده سولفور بیشتر «گاز ترش» نامیده می شود. گاز ترش غیرمطلوب است چون ترکیبات سولفوری که دارد می تواند بسیار مضر باشد حتی برای تنفس هم مرگ آور است. گاز ترش می تواند هم چنین بسیار فرساینده باشد. به علاوه سولفوری که در جریان گازطبیعی وجود دارد می تواند استخراج شود و به طور جداگانه وارد بازار شود. در واقع براساس گزارش ها و مطالعات انجام شده تولید سولفور از این طریق می تواند حدود 15درصد از تولید کل سولفور را در بربگیرد. سولفوری که در گازطبیعی وجود دارد به شکل سولفید هیدروژن (H2S) است و معمولا اگر میزان سولفید هیدروژن از 5.7 میلی گرم در هر مترمکعب گازطبیعی بیشتر شود این گاز، گاز ترش نامیده می شود. فرایند جداسازی سولفید هیدروژن از گازترش، به شیرین کردن گاز نامیده می شود.

فرایند اولیه شیرین کردن گاز ترش بسیار به فرایند نم زدایی گلایکول و جذب NGL شباهت دارد. اگرچه در این مورد از محلول های آمین برای جدا کردن سولفید هیدروژن استفاده می شود. به این فرایند،«فرایند آمین» می گویند و در 95 درصد از شیرین کردن گازهای ترش به کار می رود. گاز ترش از میان یک برج حرکت می کند که دارای محلول آمین است. ترکیب این محلول بسیار به ترکیب سولفور شباهت دارد و همان طوری که گلایکول آب را جذب می کند، سولفور را جذب می کند. دو محلول آمین اساسی وجود دارد که در این فرایند مورد استفاده قرار می گیرد: مونواتالونامین(MEA) و دی اتالونامین ((DEA هر کدام از این ترکیبات در شکل مایع ترکیبات سولفور را از گازطبیعی هنگام عبور جذب خواهد کرد. گاز باقی مانده به راستی عاری از ترکیبات سولفور است بنابراین آن وضعیت ترش را از دست می دهد. مثل فرایند استخراج NGL و نم زدایی گلایکول محلول آمین استفاده شده می تواند دوباره تولید شود (یعنی زمانی که سولفور جذب شده جدا شود) و به آن اجازه می دهد تا دوباره برای عمل آوری گازهای ترش بیشتر استفاده شود.

اگر چه بیشتر شیرین سازی گاز ترش شامل فرایند جذب آمین است امکان استفاده از جاذب های جامد مثل اسفنج های آهنی برای جداسازی دی اکسیدکربن و سولفید وجود دارد.سولفور می تواند جداگانه فروخته شود اگر که شکل پایه آن کاهش پیدا کند. سولفور پایه یک پودر زرد روشن است و می تواند اغلب در تپه های بزرگی نزدیک نیروگاه های عمل آوری گاز دیده شود. به منظور بازیافت سولفور پایه از نیروگاه پردازش گاز، سولفوری که ناخالص دارد و از فرایند شیرین سازی به دست می آید باید بیشتر عمل آوری شود. فرایند مورد استفاده برای بازیافت سولفور با نام فرایند «کلاوس» شناخته می شود و واکنش های گرمایی و کاتالیزی استفاده می شود تا عنصر پایه از محلول سولفید هیدروژن استخراج شود.به طور کلی فرایند کلاوس معمولا قادر به بازیافت 97 درصد از سولفور موجود در گازطبیعی است. از آن جایی که این یک ماده مضر و آلاینده است باز هم تصفیه می شود.پردازش گاز یک قطعه ابزاری از زنجیره با ارزش گازطبیعی است این عمل در تضمین این که گازطبیعی به شکل پاک و خالص استفاده شود کاربردی و حیاتی است. وقتی گازطبیعی به طور کامل پردازش شد و برای مصرف آماده شد باید از مناطق تولید و پردازش به مناطق مورد نیاز منتقل شود.

انواع راکتورهای شیمیایی

تقسیم بندی راکتورهاراکتورها براساس نوع واکنش انتخاب می شوند. بر اساس یک تقسیم بندی راکتورها به دو دسته به صورت زیر تقسیم می گردند:
1- مداوم مخزنی (Continuous) شکل مجهز به همزن و لوله ای شکل
2-غیر مداوم ((non-continuous
بر اساس نوع دیگر تقسیم بندی راکتورها را به دو دسته زیر تقسیم می کنند
:
1-واحدی (Stagewise)
2-دیفرانسیلی(Differential)

راکتورهای واحدی(Stagewise) در این نوع راکتورها شرایط ذر تمام حجم سیستم به صورت یکنواخت باقی می ماند. اگرازهرنقطه راکتور نمونه برداری کنیم، از نظر ترکیب نسبی و دما یکسان است و هیچ تفاوتی ندارد و موازنه جرم و انرژی رادر تمام راکتور برقرار می نماییم.

راکتورهای دیفرانسیلی (Differential)
شرایط درهرنقطه از راکتور یکسان نبوده و به صورت دیفرانسیلی تغییر می کند. ممکن است با زمان تغییر ننماید، ولی از هر نقطه به نقطه دیگر متفاوت است. برای برقراری موازنه جرم و انرزی باید یک جزء دیفرانسیلی در نظر گرفت.تفاوت راکتورهای واحدی و دیفرانسیل
ی
این است که در راکتورهای دیفرانسیلی بین غلظت ورودی و خروجی، تمام مقادیر را داریم ولی در راکتورهای واحدی نمی توانیم غلظت را به طور پیوسته داشته باشیم و غلظت به طور پله ای تغییر می کند.

راکتور ناپیوسته (Batch)
در یک راکتور ناپیوسته ورود و خروج جرم وجود ندارد. به عبارت دیگر ترکیب شوندگان را که ابتدا وارد ظرف کرده اند به شدت مخلوط می کنند تا واکنش به مدت معینی انجام گیرد. از دیدگاه تاریخی راکتورهای ناپیوسته از آغاز صنعت شیمیایی مورد استفاده بوده است و هنوز هم به صورت وسیعی در تولید مواد شیمیایی با ارزش افزودنی بالا نظیر دارو سازی مورد استفاده می باشد. راکتورهای نا پیوسته در موارد ذیل استفاده میگردد
:


1-تولید در مقیاس های کوچک صنغتی
2-برای محصولاتی که تولید صنعتی آنها در شرایط مداوم مشکل است
3-تولید صنعتی محصولات گران قیمت
4-آزمایش کردن فرایند های نا شناخته


امتیاز راکتورهای ناپیوسته (Batch) در این است که با دادن زمان لازم برای انجام واکنش مواد اولیه با درصد تبدیل بالا به محصولات موردنظر تبدیل می گردند. در حالی که استفاده از این نوع راکتورها محدود به واکنش های متجانس فاز مایع می باشد. از دیگر محدودیت های این نوع راکتورها بالا بودن هزینه تولید در واحد حجم محصول تولید شده می باشد. همچنین تولید صنعتی در مقیاس بالا در این گونه راکتورها مشکل است. لازم به ذکر است که در یک راکتور نا پیوسته کامل (ایده آل) اختلاف درجه حرارت یا غلظت درون حجم سیستم وجود ندارد . هر چند به علت انجام واکنش غلظت اجزاء با زمان تغییر خواهد کرد ولی در هر لحظه در تمام نقاط سیستم غلظت یکسان خواهد بود و در نتیجه سرعت واکنش نیز در تمام نقاط یکسان و برابر سرعت متوسط سیستم می باشد.

راکتورهای نیمه پیوسته
در این گونه راکتورها قسمتی از مخزن راکتور با یک یا چند ماده واکنش دهنده تا اندازه ای پر شده و مواد اضافه شونده به صورت پیوسته وارد راکتور می شوند و حجم و ترکیب مخلوط واکنش دهنده با زمان تغییر می کند وهنگامی که میزان تبدیل مطلوب حاصل گردد راکتور برای انجام فرایند بعدی تخلیه می گردد.

راکتور مخلوط شونده(CSTR)
راکتور مخلوط شونده در شرایطی که یک واکنش شیمیایی احتیاج به همزدن شدید داشته باشد مورد استفاده قرار می گیرد.
راکتورهای مخلوط شونده یا به تنهایی و یا به صورت پشت سرهم متصل می گردند.
کنترل حرارتی در این نوع راکتورها به آسانی انجام می گیرد. یکی از محدودیتهای این نوع راکتورها درصد تبدیل پایین در مقایسه با سایر راکتورها می باشد. به همین دلیل حجم راکتور مذکور باید بزرگ انتخاب شود، تا به درصد تبدیل بالا دست یافت. راکتورهای Mixed یا CSTR
برای اغلب واکنش های متجانس در فاز مایع استفاذه می شود.
در راکتورهای اختلاط کامل به علت وجود داشتن همزن خوراک ورودی به سرعت در سرتاسر ظرف پراکنده شده و غلظت در هر نقطه درون ظرف تقریبا یکسان است . لذا سرعت واکنش در تمام نقاط درون سیستم تقریبا یکسان می گردد. بطور کلی در راکتورهای اختلاط کامل (ایده آل) تغییرات مکانی غلظت (یا خواص فیزیکی) درون راکتور و یا در خروجی آن وجود ندارد و خواص درون سیستم یکنواخت می باشد.

راکتورهای لوله ای(Plug)
در صنایع شیمیایی برای فرایند های با مقیاس بزرگ معمولآ از راکتورهای لوله ای استفاده می شود. زیرا نگهداری سیستم راکتورهای لوله ای آسان می باشد (چون دارای قسمتهای متحرک نیستند) ومعمولا بالاترین درصد تبدیل مواد اولیه در واحد حجم راکتور را در مقایسه با سایر راکتورهای سیستم جاری دارا هستند. از محدودیت این نوع راکتورها مشکل حرارتی برای واکنشهای گرمازاست که بسیار سریع عمل میکنند و نهایتآ منجر به تشکیل نقاط داغ (Hot Spot) می گردند. اغلب واکنشهای متجانس گازی در این نوع راکتورها انجام می گیرند.
در جریان Plug سرعت کلیه ذرات یکسان است. هیچ ذرهای از ذره دیگر سبقت نمی گیرد و عقب هم نمی ماند. هیچگونه تداخلی هم در جریانها نداریم ولی در بیشتر موارد الگوی جریان متفاوت است. دلیل این است که همواره در جهت حرکت سیال یک جریان برگشتی (معکوس) داریم. حرکت معکوس سیال را Back Mixing (پس آمیزی یا اختلاط متقابل) می گویند. درون
راکتورهای Plug غلظت از نقطه ای به نقطه ذیگر تغییر می کند. چنین سیستمهایی توزیع شده (Distributed) نامیده می شوند و تجزیه تحلیل معادله عملکرد آنها در شرایط پایدار مستلزم حل معادلات است.

راکتورهای دوره ای (Recycle Reactor)
در این نوع راکتور مخلوط واکنش خروجی از راکتور بدون عبور از مراحل جدا سازی و بازیافت به ورودی راکتور برگشت داده می شود. این نوع برگشت در راکتور Mixed وجود دارد واز این نظر امری عادی می باشد. یعنی استفاده از جریان برگشتی برای یک راکتور Mixed اثری روی بازدهی ندارد. باید توجه داشت که استفاده از جریان برگشتی برای یک راکتور با جریان Plug معمولآ بازدهی را کاهش می دهد و آن را به سمت بازدهی یک راکتور Mixed سوق می دهد.
لذا معمولآ در شرایط زیر از راکتورهای دوره ای استفاده می کنیم:
1-برای واکنشهای اتوکاتالیزوری و واکنشهایی که احتیاج به همزن خاصی دارند. مثلآ اگر واکنشی احتیاج به درصد معینی از همزن (کمتر از الگوی اختلاط راکتور مخلوط شونده و بیشتر از الگوی اختلاط در راکتور لوله ای) داشته باشد از راکتور دوره ای استفاده می کنیم.
2-برای واکنشهایی که باید در شرایط هم دما انجام بگیرند.
3-برای واکنشهایی که متشکل از چند واکنش سری یا موازی رقابتی هستند، برای رسیدن به تولید بهینه (ماکزیمم) از محصول مورد نظر (Selectivity)، از راکتورهای دوره ای استفاده می کنیم.

منبع:irche.com

نفت سفید

نفت سفید یا کروزن، برشی از نفت خام است که حدود نقطه جوش آن 180 الی 275 درجه سانتیگراد و دانسیته آن 780/0 می‌باشد. قسمت اعظم نفت سفید شامل هیدروکربورهایی است که مولکول آنها دارای 11 تا 15 اتم کربن است.



نفت سفید (کروزن)

نفت سفید یا نفت چراغ که در ایران به طور معمول نفت می‌نامند، مایعی بیرنگ و کمی سنگین تر از بنزین است که بوی مخصوص آن پس از تبخیرشدن از بین می‌رود. نفت سفید از آغاز پیدایش صنعت نفت تا 50 سال ، مهمترین فراورده نفتی بود. نخست بعنوان روغن چراغ بکار می‌رفت و هنوز هم در مواردی برای تولید روشنایی بکار می‌رود. چگالی نفت در حدود 780/0 است که افزایش چگالی آن معرف وجود درصد بیشتری از هیدروکربورهای نفتنی ومعطره است و کیفیت آن بستگی به نوع اجزاء تشکیل دهنده آن و حدود نقطه جوش آن دارد.


نقطه اشتعال

نقطه اشتعال یک مایع نفتی حداقل درجه حرارتی است که ، بخار حاصل از آن در مجاورت شعله برای چند لحظه مشتعل گردد. به عبارت دیگر نقطه اشتعال درجه حرارتی است که در آن درجه حرارت به اندازه کافی بخار تولید می‌شود که با عوامل موجود در مقابل شعله قابل اشتعال گردد. نقطه اشتعال مواد نفتی معرف مقداری مواد سبک موجود در آن است، و بنابراین به کمک آن می توان با درنظر گرفتن حد انفجار ، احتمال انفجار در مخازن نفتی را پیش بینی کرد. نقطه اشتعال نفت سفید نباید از 100 درجه فارنهاریت پایین تر باشد. پایین بودن نقطه اشتعال به علت وجود هیدروکربورهای ردیف بنزین می‌باشد که باید در هنگام پالایش همواره کنترل گردد.



نقطه دود (SMOKE POINT)
حداکثر طول شعله چراغ فتیله ای استاندارد آزمایشگاهی قبل از دود کردن ، بر حسب میلی‌متر، نقطه دود هیدروکربور نامیده می شود. نقطه دود نفت سفید بستگی به هیدروکربورهای متشکله آن دارد و نقطه دود آن نباید از میلی‌متر کمتر باشد. برای بالابردن نقطه دود هیدروکربورهای معطره آن را به روش استخراج جدا می‌کنند.
مقدارذغال شدن (CHARVAIUE)
این آزمایش برای تعیین مقدار کربن باقی مانده که از سوختن نفت چراغ در 24 سرعت تولید می‌گردد، می‌‌باشد و از روی آن می‌توان مرغوبیت نفت سفید را بررسی کرد. روشهای مختلفی جهت تعیین مقدار کربن حاصل از سوختن نفت سفید وجود دارد که براساس روشهای IP یا ASTM می باشد.

مهمترین خواص دیگر نفت سفید از نظر تجارتی عبارتند از: چگالی ، ارزش حرارتی ، مقدار گوگرد ، بو ، و یسکوزیته و غیره.
تصفیه شیمیایی نفت سفید
برشهای مختلف حاصل از تقطیر نفت خام از جمله: نفت سفید ، نفت کوره ، روغن‌ها و گازوئیل دارای ناخالصیهایی مانند: هیدروکربورهای غیر اشباع ترکیبات اکسیژنه (اسیدهای نفتنی و ترکیبات آسفالتی) ، ترکیبات گوگردی (سولفونه و سولفوره) و ازته و همچنین ناخالص فلزی می‌باشد. این ناخالصیها علاوه بر اینکه از مرغوبیت محصولات می کاهند، باعث خوردگی دستگاهها مورد استفاده می‌گردند. در بسیاری از موارد ، لازم است که این ناخالصیها از محصولات حذف گردند تا به مواد با ویژگی‌های استاندارد و قابل مصرف تبدیل گردند. هدف و روشهای خالص سازی به طبیعت محصول نفتی و کاربرد بعدی آن بستگی دارد.
عمل تصفیه به روشهای مختلف صورت می‌پذیرد که در زیر به تعدادی از آنها اشاره می شود:

تصفیه با سود
این روش بیشتر به منظور شستشوی ترکیبات اسیدی موجود در برش های نفتی به کار گرفته می شود که مهمترین این ترکیبات مرکاپتانها ، هیدروژن سولفوره ، گاز کربنیک تیوفنل ها ، آلکیل فنل ها ، اسید سیانیدریک ، اسیدهای‌چرب و اسیدهای نفتنی می باشند.

تصفیه با اسید سولفوریک
اسید سولفوریک با هیدروکربورهای آروماتیک ، اولفین‌ها ، ترکیبات اکسیژنه ، اسیدها ، مواد رنگی و سولفوره ترکیب می شود. اسید دکانته شده، به علت داشتن رزین‌ها (حاصل از پلیمریزاسیون در مجاورت اسیدسولفوریک) سیاه رنگ می‌باشد. برای اینکه نفت رنگ زرد نداشته باشد، باید مقدار اسید نیتروی موجود در اسید سولفوریک کمتر از 1/0 درصد باشد اغلب جهت حذف ذرات اسیدی اضافی ، عمل شستشو با یک محلول سود و سپس با آب انجام می‌گیرد.

روش دکتر
انواع بنزین و ترکیبات سنگین تر مانند برش نفتا و کروزن را می توان به کمک این روش مورد ترتمان قرار داد. به علت اینکه قسمتی از مواد شیمیایی ، در حین استخراج مصرف می شود، یک روش نیمه رژنراتیو می‌باشد یعنی نصف مواد دوباره احیا می گردد. در این روش از محلول قلیایی پلمبیت سدیم (Na2PbO2) جهت ترتمان استفاده می‌شود.



روش هیپوکلریت
از هیپوکلریت ، اغلب به عنوان عامل اکسیدکننده، برای کاهش بو و نیز کاهش مقدار مرکاپتانها در برشهای مختلف نفتی ، استفاده می‌شود. این روش می‌تواند، یک روش تکمیلی برای ترتمان برشها با سود باشد.
تصفیه نفت سفید بوسیله انیدرید سولفوره (روش ادلینو"Edeleanu")
با توجه به اینکه انیدرید سولفوره‌ی مایع (SO2) به راحتی هیدرکربورهای اشباع نشده از کربن و ترکیبات آروماتیک را در خود حل می کند، لذا از آن برای جدا کردن ناخالصی های نفت سفید و تصفیه آن استفاده می‌شود. در این روش تصفیه نفت سفید که به روش ادلینو (Edeleanu) معروف است، ابتدا ماده نفتی را از روی یک لایه کلرور سدیم و کلرورکلسیم خشک به نسبت 2 به 1 عبور می دهند تا کاملا خشک شود. بعد به وسیله دستگاههای تبادل حرارتی در یک ظرف آهنی تا دمای (10-) درجه سانتگراد سرد میکنند، سپس انیدرید سولفوروی مایع با (10-) درجه سانتیگراد را بدون هم زدن به صورت قطرات خیلی ریز در داخل طشتک بر روی ماده نفتی می‌پاشند. مقدار انیدرید سولفوردی مایع لازم در این عملیات بیش از یک چهارم مقدار مایع نفتی است. مایع داخل طشتک پس از مدتی به دو فاز تبدیل می‌شود که قشر بالایی آن ماده نفتی یا کروزن اشباع از انیدرید سولفورو است. فاز پایینی انیدسولفوردی مایعی است که هیدروکربورهای غیر اشباع سنگین و سایر ناخالصی‌ها را در خود حل کرده است. به وسیله عمل دکانتاسیون ، دوفاز را از هم جدا می‌کنند و آنها را از دستگاههای تبادل حرارتی عبور می‌دهند تا در اثر گرما، انیدریدسولفورو به صورت گاز خارج گردد. گازهای حاصل را بوسیله کمپرسورها می‌مکند و در اثر برودت به مایع تبدیل می‌کند که مجددا از آن در عملیات بعدی استفاده می‌شود. در این عملیات، حدود 3/0 درصد انیدرید سولفورو در لایه فوقانی باقی می‌ماند، که به وسیله شستشو با آب از بین می‌رود. از مواد باقی مانده در لایه زیرین، بعد از جداکردن انیدرید، می توان اساس تربالتین و روغنهای سنگین تهیه کرد. در این عملیات ، در حدود 5/0 درصد انیدررید سولفورو از بین می‌رود.

موارد کاربرد نفت سفید

* روشنایی: از کروزن جهت روشنایی و همچنین برای علامت دادن به کمک آتش استفاده می شود چون نقطه اشتعال کروزن بالاتر از 35 درجه است لذا از نظر آتش سوزی خطری ندارد.
* بعنوان سوخت: کروزن سوخت اغلب تراکتورها و ماشین های مورد استفاده در کشاورزی و همچنین بعنوان منبع نیرو در برخی توربینهای هواپیماها و موتورهای جت هواپیماها می‌باشد.

مشخصات مهم نفت سفید
تفکیک نفت سفید از نفت خام

نفت خام را پس از استخراج  به پالایشگاه منتقل میشود تا در آنجا پالایش و به ترکیبات مفید و قابل استفاده تبدیل شود زیرا نفت خام را به همان صورت اولیه نمی‌توان استفاده کرد. نفت خام مخلوطی از هیدروکربورهای مختلف بوده که در آن مواد سبک مانند بنزین و مواد سنگین مانند قیر وجود دارد که در هم حل شده اند. برای استفاده باید این مواد از هم تفکیک گردند و به این جهت لازم است که عمل تفکیک روی نفت خام انجام گیرد.
تفکیک نفت خام در دو مرحله صورت می‌گیرد: اول تفکیک جزء به جزء همه نفت خام در فشار اتمسفر، و سپس ارسال باقیمانده دیرجوش این مرحله به دستگاه تفکیک دیگری که تحت خلا شدید عمل می‌کند. بنابراین ، نفت خام پس از حرارات در کوره در برج تقطیر اتمسفری به فراورده های زیر تفکیک می شود: گازهای سوختی (که عمدتا شامل متان و اتان است) ، گازهای سبکتر (شامل پروپان ، بوتان وهمچنین متان و اتان است) ، نفتای سبک ، نفتای سنگین ، نفت سفید ، نفت گاز یا گازوئیل و باقیمانده خام برج تقطیر اتمسفری. در برج تقطیر در خلا نیز باقیمانده برج تقطیر اتمسفری به جریان نفت گاز خلا و باقیمانده برج تقطیر در خلا تفکیک می‌شود. نفت گاز سبک ، نفت گاز اتمسفری و نفت گاز خلا را غالبا برای تولید بنزین ، سوخت هواپیما و سوخت دیزل به واحد هیدروکراکینگ یا کراکینگ کاتالیزوری می‌فرستند. باقیمانده برج خلا را نیز می توان در واحدهای گرانروی شکن ، کک سازی . یا آسفالت زدایی برای تولید نفت کوره سنگین و یا خوراک واحد کراکینگ و یا مواد خام روغن روانسازی پالایش کرد باقیمانده نفت خامهای آسفالتی را می توان برای تولید آسفالت جاده سازی و یا پشت بام ، مورد عملیات پالایش دیگری قرار دارد.

نانوتکنولوژی و صنعت نفت

نانوتکنولوژی و صنعت نفت

کاتالیزور Pd/ZnO

Reduction of Pd/ZnO Catalyst and Its Catalytic Activity for Steam Reforming of Methanol

Abstract

Key Words: palldium; zinc oxide; supported catalyst; steam reforming of methanol; PdZn

alloy; active species; reduction

منبع :

The effect of reduction temperature of the coprecipitated 15.9%Pd/ZnO catalyst on the catalytic activity for steam reforming of methanol was investigated. The results showed that methanol conversion at 523 K reached a maximum of 41.6% with a CO2 selectivity of 94.6% and an outlet CO concentration of 1.26% over the catalyst reduced at 523–573 K. X-ray diffraction analysis revealed that a PdZn alloy began to form at a reduction temperature of 523 K. The improvement in activity at reduction temperature ranging from 523 to 573 K was attributed to the formation of the PdZn alloy with crystal size of 5–14 nm. The interaction between Pd and ZnO upon reduction was also explored by means of temperature-programmed reduction and X-ray diffraction. The results demonstrated that the reduction over Pd/ZnO might undergo a process PdO/ZnO → Pd/ZnO → PdZnO1–x/ZnO → PdZn alloy/ZnO. The PdZn alloy was partially oxidized to PdZnO1–x again during the reaction. The PdZn alloy and PdZnO1–x species might be the real active species.

کاتالیزور گوگرد زدائی

DESULFURIZATION CATALYSTS:   Catalysts for removal of H2S and other sulfur species from natural gas to naphtha feed streams.

به این لینک مراجعه نمایید.

کاربرد مواد نانومتخلخل در پلیمریزاسیون و ایزومریزاسیون

علوم و فناوری نانو در دهه 1980 میلادی توسط فیزیکدان آمریکایی "ریچارد فاینمن" تشریح شد. در این فناوری خواص فیزیکی مواد نانوابعاد در حوزه‌ای بین اثرات کوانتومی و خواص توده قرار می‌گیرد. علوم نانو محصول مطالعات دانشمندان در رشته‌های مختلف بوده است که با راه‌حل‌ها و روش‌های گوناگون و خلاقانه به صورت علوم بین رشته‌ای درآمده است . محققان و سیاستگذاران سراسر جهان انتظار دارند که علوم نانو موجب تغییرات وسیعی در نحوه زندگی شود.
در این نوشتار، ضمن بررسی فرایند کراکینگ / شکست کاتالیستی، انواع کاتالیست‌های مورد استفاده در این فرایند و تاثیر فناوری نانو بر آنها که منجر به ایجاد نسل جدیدی از کاتالیست‌ها با نام "نانوکاتالیست‌ها" شده، بررسی گردیده است.
مقدمه
پالایش نفت با تقطیر جزء به ‌جزء نفت‌خام به گروه‌های هیدروکربنی شروع شده و خواص محصولات مستقیماً متناسب با نحوه انجام فرآیند تبدیل نفت می‌باشد.
فرآیندها و عملیات پالایش نفت به پنج بخش اصلی تقسیم می‌شود :
الف) تفکیک (تقطیر) ب) فرآیندهای تبدیلی که اندازه و ساختار ملکولی هیدروکربن‌ها را تغییر می‌دهند این فرآیندها شامل: ب-1) تجزیه (تقسیم) ب-2) همسان‌سازی(ترکیب) ب-3) جایگزینی(نوآرائی) می‌باشند.
ج) فرآیندهای عمل‌آوری د) تنظیم و اختلاط
فرایند تجزیه که از زیر شاخه‌های فرایندهای تبدیلی محسوب می‌شود، شامل هیدروکراکینگ، شکست کاتالیستی و شکست گرمایی می‌شود.
پلیمریزاسیون
پلیمریزاسیون در صنایع پتروشیمی، فرآیند تبدیل گازهای اولفین سبک، شامل اتیلن، پروپیلن و بوتیلن به هیدروکربن‌های با وزن مولکولی بیشتر و عدد اکتان بالاتر می‌باشد که به‌عنوان مخلوطهای سوختی مرغوب استفاده می‌شود. درطی این فرآیند 2 یا بیشتر مولکول‌های اولفین یکسان، تشکیل یک مولکول با عناصر یکسان و خواص یکسان به‌عنوان مولکول‌های جدید می‌دهند.
پلیمریزاسیون می‌تواند بطور گرمایی یا در حضور کاتالیست دردمای پایین‌تر اتفاق بیفتد.

شکل 1 ) نمایه فرایند پلیمریزاسیون

ایزومریزاسیون
در ایزومریزاسیون بوتان نرمال، پنتان نرمال و هگزان نرمال، به ایزوپارافین‌های مربوطه با عدد اکتان بالاتر تبدیل می‌شود. پارافین‌های با زنجیره مستقیم، به زنجیره‌های شاخه‌دار با همان تعداد اتم ولی با ساختار هندسی متفاوت تبدیل می‌شوند.
محصولات ایزو بوتان این واحد، خوراک واحد آلکیلاسیون بوده و ایزوپنتان و ایزوهگزان برای مخلوط گازوئیل بکار می‌رود.
کاربردهای فناوری نانو در پلیمریزاسیون و ایزومریزاسیون
پلیمریزاسیون
به‌علت اینکه پلیمر شدن در این‌جا به معنی واقعی کلمه اتفاق نمی‌افتد بلکه واکنش تا تشکیل دی‌مر‌ها و تری‌مرها خاتمه می‌یابد لذا باید طراحی فضای واکنش به گونه‌ای صورت گیرد که با تشکیل دی‌مرها واکنش ادامه نیابد لذا می‌توان از مواد نانومتخلخلی استفاده کرد که ابعاد کانال‌های آن برای تحقق این امر مناسب باشند.این مواد نانوتخلخل را می‌توان نانوراکتور نامید. در این زمینه به کار "سانو" و "اومی" اشاره کرد که از سیلیکا مزوپروس به عنوان نانو راکتور برای پلیمریزاسیون اولفین‌ها استفاده کرده‌اند.[1]

در این روش ماده متخلخل MCM-41 حاوی فلز توسط روش Post – Synthesis با ترکیبات ارگانومتالیک یا آلکوکسید آماده شد و به عنوان نانوراکتور برای فرآیند پلیمریزاسیون اولفین بکار رفت. در حقیقت MCM-41 حاوی فلز به عنوان کوکاتالیست غیرهمگن به‌ کار می‌رود. [1]
ایزومریزاسیون
به دلیل اینکه کانال‌های مواد متخلخل مکان مناسبی برای انجام واکنش‌های شیمیایی می‌باشد می‌توان از نانومواد متخلخل برای این منظور استفاده کرد. این کار در واکنش مشابه پتروشیمی مورد بررسی قرار گرفته است. به عنوان مثال بائر و همکاران زئولیت‌های نانوساختار HZSM – 5 را در ایزومریزاسیون زایلن بررسی کرده‌اند.[2]
هیدروژن در جداکننده‌های با فشار عملیاتی بالا (Separator)، جدا شده و کلرید هیدروژن در ستون جداساز (Stripper) حذف می‌شود. حاصل آن که مخلوط بوتان بدست آمده می باشد وارد تفکیک‌کننده (Fractionator) شده، در آن بوتان از ایزوبوتان جدا می‌شود.در کلیه موارد بالا می‌توان از نانومواد متخلخل کربنی برای جداسازی گازها استفاده کرد.
در فرایند ایزومریزاسیون می‌توان به کاربردن متنوعی از مواد نانوساختار اشاره کرد همچنان که در طی تحقیقاتی برای پیدا کردن نانومواد مناسب برای فرایند ایزومریزاسیون آنتونلی و همکاران از میکروقفس های توخالی زیرکونیا با استفاده از پایه های مالسیلی کروی استفاده کرده‌اند.[3‍‍]

مراجع
 : 1Tsuneji Sano and Yasunori Oumi
2Catalysis Surveys from Asia Volume 8, Number 4 December 2004 295 - 304 Authors : Shim H.; Phillips J.1; Fonseca I.M.; Carabinerio S.
Source : Applied Catalysis A: General, November 2002, vol. 237, no. 1, pp. 41-51(11)
 : 3Antonelli D.M , Micro Porous & mesoporous Mat.vol 28

  1Tsuneji Sano and Yasunori Oum

2Bauer , Frank et.al

3Antonelli D.M

منشا نفت و گاز

منشا نفت و گاز

بشر از قرنها پیش به وجود نفت پی برده بود و این ماده روغنی شکل و اعجاب‌آمیز از دیر باز مورد استفاده پیشینیان بوده است. نفت را OIL یا Petroleum (روغن سنگ) می‌نامند. در زبان اوستایی نپتا به معنی روغن معدنی است که کلدانیها و عربها آن را از فارسی گرفته و نفت خوانده‌اند. هم‌اکنون بیش از دوسوم انرژی مصرفی جهان از نفت تامین می‌شود. نظریات متعددی راجع به منشاء نفت و گاز ابراز شده است که اولین فرضیه ها برای تشکیل هیدروکربنها با منشاء غیر آلی نظیر منشاء آتشفشانی، شیمیائی و فضائی ارائه گردیده است. لکن امروزه در خصوص منشاء آلی هیدروکربها اتفاق نظر وجود دارد. این مواد آلی می تواند بقایای گیاهان و حیوانات خشکی و دریائی عمدتا" پلانکتونها باشد.به طور دقیق تر در دریا و اقیانوس دو دسته تولیدکننده اصلی ماده آلی مناسب برای تبدیل به نفت داریم: فیتوپلانکتونها( دیاتومه ,داینوفلاژله, جلبک سبزآبی) زئوپلانکتونها وجانوران عالیتر تغذیه کننده از فیتوپلانکتونها برای اینکه تولید مواد آلی در محیط آبی به میزان مناسبی باشد,دو عامل دخیلند:1.ضخامت زون نور دار 2.میزان ورود مواد مغذی به زون نوردار( مواد مغذی که برای رشد گیاهان و جانوران مفیدند همانا فسفاتها ونیتراتها و اکسیژن هستند.) بنابه این توضیحات بیشترین تولید مواد آلی در دو ناحیه عمده در حواشی قاره هاست که عبارتند از آبهای کم عمق فلات قاره و زونهای چسبیده به محیطهای قاره ای که جریان روبه بالای آبهای سرد و عمیق اقیانوسی را پذیرا می شوند. در چنین محیطهایی که تولید مواد آلی زیاد است,با رخدادن طوفان ومخلوط شدن آبهای بی اکسیژن واکسیژندار , ویا ازدیاد تولید جانداران وکم شدن اکسیژن , گروهی از جانداران دچار مرگ و میر گروهی میشوندو در کف محیط رویهم انباشته میشوند. اهمیت پلانکتونها در تشکیل نفت از آنجا ناشی می شود که آب دریا ناحیه مساعدی جهت تکثیر پلانکتونها می باشد و تعداد آنها نیز در آب دریا بسیار زیاد می باشد. پلانکتونها به علت سرعت رشد و کوچکی جثه، ماده آلی مناسبی است که به سهولت به وسیله رسوبات ریز دانه مدفون گشته و مصون از اکسید شدن در رسوبات باقیمانده و هیدروکربن را تولید می نماید. طبق نظریات جدید مواد مختلف آلی ته نشین شده با رسوبات نرم هنگام دیاژنز (سنگ شدن) تبدیل به یک ماده واسط بین ماده آلی و هیدروکربن می گردد. این ماده واسط کروژن (Kerogn) نامیده می شود. کروژن یک ماده جامد نامحلول آلی است که محصول دیاژنتیک مواد آلی است. توان تولیدی کروژنها برای تولید نفت و گاز متفاوت است.

نفت تشکیل یافته به علت مایع بودن و همچنین به علت خاصیت موئینگی محیط خود از خلال سنگها گذشته، زیر یک طبقه غیر قابل نفوذ در بالاترین قسمت یک چین‌خوردگی که تاقدیس نامیده می‌شود، ذخیره می‌گردد.

بررسی عوامل مشترک مخازن نفت و گاز نشان می دهد که:

الف- شرایط و محیط رسوبی خاصی لازم است تا طبقات نفت زا (سنگ مادرSource Rock) تشکیل شود و همچنین شرایط خاصی باید وجود داشته باشد تا مواد آلی رسوب یافته در این لایه ها به هیدروکربن تبدیل گردد.
ب- سنگ متخلخل و نفوذپذیری (سنگ مخزن Reservoir rock ) باید وجود داشته باشد تا فضای لازم جهت انبار شدن نفت فراهم آید.
ج- سنگ مخزن می بایستی شکل خاصی داشته باشد تا بتواند تله (Trap) را تشکیل داده باعث جمع شدن هیدروکربن گردد.
د- سنگ غیر قابل نفوذی (سنگ پوشش Cap Rock ) لازم است که مخزن را بپوشاند تا از خروج نفت و گاز از مخزن جلوگیری نماید.

تبدیل مواد الی به کروژن و گاز

در باره نحوه تبدیل مواد آلی رسوبات به نفت و گاز با مطالعات جدید ژئوشیمیائی و جمع آوری اطلاعات تجربی ثابت شده است که قسمت اعظم هیدروکربنهای طبیعی در اثر کراکینگ کروژن ناشی از حرارت زمین (ژئوترمال) تولید می گردد. همانطور که بیان گردید برای بوجود آمدن نفت و گاز وجود مواد آلی فراوان و تشکیل کروژن در هنگام دیاژنز رسوبات ضروری می باشد. پس سنگ مادر (Source Rock) سنگی است که دارای مقدار کافی کروژن باشد. شرایط مساعد رسوبی برای تجمع و ذخیره شدن مواد آلی شامل گیاهان و جانوران دریائی و همچنین مواد آلی خشکی که توسط رودخانه ها به حوزه رسوبی حمل می گردد، رسوبات رسی و یا گل کربناته (ریزدانه بودن و محیط آرام رسوب گذاری) می باشد. علاوه بر این محیط کف دریا بایستی محیط احیاء کننده باشد تا از اکسیدشدن مواد آلی جلوگیری بعمل آید.

طبیعی است هرچه میزان کروژن در سنگ مادر بیشتر باشد توانائی بیشتری برای تولید هیدروکربن وجود دارد لکن علاوه بر درصد مواد آلی، سنگ مادر بایستی ضخامت کافی نیز داشته باشد. براساس مطالعات ژئوشیمیائی انجام شده برای اینکه سنگ مادری بتواند هیدروکربن تولید نماید باید دارای حداقل تراکمی از کربن آلی باشد که از آن کمتر قادر به تولید هیدروکربن نخواهد بود. این حداقل عمدتا" 5/0 درصد کربن آلی برآورد می شود. سنگ مادرهائی که در حوزه های رسوبی ایران دیده می شود نظیر سازند کژدمی در ناحیه زاگرس حدود 10-5 درصد کربن آلی دارد که بیشتر از جلبکها منشاء گرفته است.

هیدروکربنها در اثر کراکینگ کروژن بوجود می آیند. کراکینگ کروژن عمدتا" در درجه حرارتهای 100-80 درجه سانتیگراد شروع می شود. این درجه حرارت در یک ناحیه رسوبی با درجه حرارت ژئوترمال طبیعی معادل عمقی بین 3000-2000 متر می باشد. بنابراین یک سنگ مادر هرچه قدر هم ضخیم و غنی از مواد آلی باشد تا در اعماق فوق قرار نگیرد نمی تواند هیدروکربن تولید نماید. بر همین اساس ابتدا نفت خام سنگین تولید می گردد. چگالی و وزن مخصوص نفت خام با ازدیاد عمق کاهش می یابد. هرچه قدر سنگ مادر عمیقتر مدفون گردد نفت تولید شده سبکتر است و گاز معمولا" محصول آخرین این فعل و انفعالات است.

بنابراین ابتدای نفت های بسیار سنگین، نفتهای پارافینیک، نفتهای سبک، نفتهای میعانی و نهایتا" گاز بدست می آید. وقتی درجه حرارت از 165 درجه سانتیگراد تجاوز کند فقط گاز تولید خواهد شد یعنی تقریبا" از عمق 5000 متر بیشتر (ضخامت رسوبی) احتمال یافتن نفت بسیار کم می شود و فقط می توان انتظار یافتن گاز را داشت. در درجه حرارتهای بالاتر از 230 درجه سانتیگراد کروژن یک بافت گرافیتی ثابت پیدا می کند که با ازدیاد درجه حرارت هیدروکربنی تشکیل نمی شود (نسبت هیدروژن به کربن تغییر نمی یابد). به طور کلی ازدیاد عمق باعث ازدیاد درجه حرارت می گردد که این ازدیاد درجه حرارت دو اثر دارد:

الف- کراکینگ کروژن و تبدیل مولکولهای بزرگ به مولکولهای کوچکتر مانند تشکیل نفت و گاز
ب- پلیمریزاسیون مولکولها که به تشکیل متان و گرافیت ختم می گردد (کروژنهای گرافیتی)

نکته مهم دیگری که در مورد تشکیل هیدروکربنها وجود دارد زمان زمین شناسی می باشد. به عبارت دیگر رسوبات قدیمی تر (از نظر زمین شناسی) در درجه حرارتهای پائین تر، همان محصولی را می دهد که سنگ مادری با سن زمین شناسی کمتر در درجه حرارتهای بالاتر هیدروکربن تولید خواهد نمود

گاز

به علت فشار زیاد درون حفره نفتی، مقدار زیادی از گاز در نفت خام حل شده است. به همین دلیل نفت خامی را که از چاه بیرون می‌آید، قبل از انتقال دادن به پالایشگاه، ابتدا به دستگاه تفکیک مخصوصی می‌برند تا قسمت اعظم گازهای سبک و آب نمک آنرا جدا سازند. گازی که مستقیماْْ از چاههای نفت خارج می‌شود با گازی که به این وسیله از نفت خام تفکیک می‌گردد، پس از تصفیه به صورت گاز طبیعی به وسیله‌ی شبکه‌ی گازرسانی برای مصارف سوخت و صنایع پتروشیمی توزیع می‌شود. گاز طبیعی مخلوطی از ئیدروکربنهای سیرشده سبک مانند متان، اتان و اندکی پروپان و بوتان است. قسمت عمده این گاز متان و مقدار کمتری اتان می‌باشد.در این گازها غالباْْ آثاری از نیتروژن، کربن دی اکسید و گاهی ئیدروژن سولفید و هلیم وجود دارد. پس از استخراج نفت آن را پالایش می‌کنند.

پالایش نفت

پالایش نفت مجموعه عملیاتی است که به وسیله آنها بسیاری از مواد گوناگون از جمله بنزین، نفت سفید، نفت گاز یا گازوئیل، نفت کوره، گریس، قیر و غیره از نفت خام بدست می‌آید. عملیات اساسی پالایش نفت را به سه دسته کلی تقسیم می‌کنند: الف- جدا کردن مواد ( با استفاده از تقطیر جزء به جزء) ب- تبدیل ( تبدیل اجزاء نامرغوب و کم‌مصرف به اجزاء مرغوب در پالایشگاه) ج- تصفیه فرآورده‌های نفتی بیش از نیم قرن از مصرف فرآورده‌های نفتی به صورتی غیر از سوخت می‌گذرد. به مرور زمان و با پیشرفت علم و تکنولوژی، انسان تعداد روزافزونی از ئیدروکربنها را به طور خالص از سایر فرآورده‌های نفتی جدا کرده و به مصرف تولید سایر مواد شیمیایی و صنعتی رسانیده است. صنایع وابسته به نفت را که از مواد نفتی محصولات غیرنفتی تهیه می‌کنند را صنایع پتروشیمی می‌نامند. مواد اولیه‌ حاصل از صنعت نفت که برای تهیه سایر فرآورده‌های شیمیایی به کار می‌رود، مواد پتروشیمی نامیده می‌شود.