شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

سیلیکون‌ها:

سیلیکون‌ها:

چسب‌های یک جزئی سیلیکون اغلب به چسب‌های ولکانیزه شونده در دمای اطاق (rtv) معروفند و شامل پلی دی متیل سیلوکسان (PDMS) با جرم‌های مولکولی در محدود 1600-300 با گروههای انتهای استات ، کتوکسیم یا اتر هستند. این گروهها توسط رطوبت اتمسفر ، هیدرولیز شده ، گروههای هیدروکسیل تشکیل می‌دهند که بعدا با حذف آب متراکم می‌شوند.

چسب‌های سیلیکونی نرم و مطلوب هستند و دارای مقاومت محیطی و شیمیایی خوبی هستند. این چسب‌ها به عنوان بهترین پوشش برای استفاده در حمام شناخته شده‌اند.

چسب چوب

چسب‌هایی که بدون واکنش شیمیایی سخت می‌شوند

این چسب‌ها شامل سه نوع زیر می‌باشند

چسب‌هایی که در اثر حذف حلال سخت می‌شوند:

چسب‌های تماسی: چسبهای تماسی احتمالا از معروف‌ترین چسب‌ها بر پایه حلال هستند. این‌ها محلول‌هایی از پلیمر در حلال آلی هستند که در دو سطح بکار می‌روند تا متصل شوند. ماده اصلی این چسب‌ها ، لاستیک پلی کلروپرن (پلی کروپرن ، پلی کلرو بوتادین) است و برای چسباندن روکش‌های تزئینی و پلاستیکهای محکم دیگر مثل ABS , DVC به چوپ و محصولات فلزی و چسبهای تماسی DIY برای تخت کفش بکار می‌روند.

چسب‌های پمادی: چسب‌های بر پایه حلال مشهور که در ظروف پماد مانند به عموم فروخته می‌شوند، اغلب محلول‌هایی از لاستیک نیتریل (همی‌پلیمر یا بوتادین و آکریلونیتریل) در حلال‌های آلی هستند.

چسب‌هایی که با از دست دادن آب سخت می‌شوند:

محلول‌های آبی و خمیرها: نشاسته ، ذرت و غلات ، منابع عمده برای استفاده چسب هستند. موارد مصرف عمده برای چسباندن کاغذ ، مقوا و منسوجات می‌باشد. کاربردهای آن شامل صفحات موجدار ، پاکتهای کاغذی ، پنجرگیری تیوپ ، چسباندن کاغذ دیواری و چسب‌های تر شدنی مجدد با آب می‌باشد. چسب‌های تر شدنی توسط آب شامل پلی (وینیل الکل) (DVOH) که در تمبر‌های پُستی مورد استفاده قرار می‌گیرند و از لاتکس صمغهای طبیعی (مثلا صمغی و دکسترین) و پلی وینیل استات (DVN) همراه با مقدار زیادی DVOH پایدار کننده تولید می‌شوند. DVOH تنها پلیمرمعروفی است که از منومر خودش ساخته نمی‌شود.

امولسیونهای آبی: اجزا ترکیبی برای پلیمریزه شدن امواسیونی عبارتند از: آب ، منومرها ، پایدار کننده ها و آغازگر. محصول پلیمر شدن امولسیونی ، شیرابه ای از ذرات پلیمر با پایدار کننده‌های جذب شده می‌باشد. معروف‌ترین مثال ،‌ چسب چوب DIY است که شیرابه آن ، شامل پلیمر پلی وینیل استات (DVA) است و به میزان زیادی در کارهای کارگاهی و در چسباندن اتصالات تاق و زبانه برای درها ، پنجره ها و مبلمان در کارخانه‌ها استفاده می‌شود و مثال دیگر در رنگهای امولسیونی بر پایه DVA هستند که برای پوشش سطح یا به عنوان چسب استفاده می‌شود.

چسب‌هایی که به وسیله سرد کردن سخت می‌شوند:

چسب‌های ذوبی: ماده اولیه چسب‌های ذوبی که از ابزار تفنگ شکلی خارج می‌شود، معمولا اتیلن وینیل استات (EVA) می‌باشد. کاربرد این چسب‌ها شامل استفاده در جعبه‌های مقوایی ، صفحه کتاب ، اتصالات حرارتی و نئوپان می‌باشد. از دیگر چسب‌های ذوبی می‌توان چسب‌های ذوبی پلی آمیدی ، پلی اورتان ، استرهای آلیفاتیک ، پلی استر اشاره کرد.

چسب‌های حساس به فشار

چسب‌های حساس به فشار ، دائما چسبناک باقی می‌مانند و به خاطر استفاده در نوار چسب‌ها و برچسب‌ها معروف هستند. این چسب‌ها بطور عمده بر پایه لاستیک طبیعی ، همی پلیمر دسته‌ای و تصادفی ، استیرن - بوتادین و آکریلیک هستند. PVC نرم شده و پلی اتیلن ، مواد نوار معمولی هستند. یک طرف نوار با یک آستری یا لایه زیری پوشیده شده است. به همین دلیل ، چسب دائما چسبناک می‌ماند و طرف دیگر ، دارای پوشش آزاد کننده ای است که وقتی که نوار باز می‌شود، با چسب جدا می‌گردد. مواد آزاد کننده که اغلب استفاده می‌شود، همی پلیمری از وینیل الکل و وینیل اکتادسیل کاربامات است که در اثر واکنش با DVOH با اکتادسیل ایزوسیانات ساخته می‌شود.

آنیون ها

آنیون ها

1.       دسته بندی آنیون ها بر حسب نوع واکنش آنها با محلول نیترات نقره وکلرید باریم صورت می گیرد

وازاین نقطه نظر آنیون ها را به سه گروه به ترتیب جدول زیر تقسیم بندی می کنند .

جدول شمارۀ یک:

دسته یا گروه

نام آنیون ها

ترکیب با AgNO3

ترکیب با BaCl2

معرف مشترک

اوّل

F-،SO42-،SO32-،S2O32-، C2O42-،CO32-،PO43-،

SiO32-،………

رسوب محلولی در اسید ها و بعضی حتی در آب می دهند مانند:AgF،Ag2SO4

رسوب غیر محلول در آب می دهد.

BaCl2در محیط خنثی و یا کمی قلیایی

دوّم

SN-،Cl-،Br-،I-، Fe(CN)6]4- S2-،CNS-،………

رسوب غیر محلول در آب می دهند.فقط Ag2Sدر آب گرم حل می شود.

رسوب محلول در اسید ها می دهد.

AgNO3در حضور HNO3رقیق

سوّم

CH3COO-،NO2،NO3،MnO4-

نمک محلول در آب میدهد.

نمک محلول در آب می دهد.

معرف خالصی ندارد.

2.       نوع دیگر دسته بندی آنیون ها بر حسب قدرت اکسید کنندگی آنها می باشد.

جدول شمارۀ دو:

دسته یا گروه

آنیون های اکسید کننده

آنیون های احیا کننده

آنیون های بی تفاوت

اوّل

CrO42-،MnO4-،NO3-،Cr2O72-،AsO43-،NO2-

دوّم

S2O32-،C2O42-،Cl-،I-، Br-CNS-،SO32-،S2-

سوّم

BO-2،PO3-4، SO42-،F-،CO2-3

SiO2-3، CH3COO-

                           لطفا  به ادامه مطلب مراجعه فرمایید

ادامه مطلب ...

مزایای بیوپلیمر

مزایای بیوپلیمر
پلیمر های متداول امروزی از نفت خام ساخته می شوند که با توجه به محدود بودن منابع نفتی باید به تدریج با بیوپلیمر ها که از منابع تجدید شونده ساخته می شوند، جانشین شوند.

بیوپلیمر از نظر بیوشیمی دان ها عبارت است از ماکرومولکول های بیولوژی که از تعداد زیادی زیر واحد کوچک و شبیه به هم که با اتصال کووالانسی به هم متصل شده اند ویک زنجیره طولانی را ایجاد می کنند، ساخته شده اند.


پلیمر های متداول امروزی از نفت خام ساخته می شوند که با توجه به محدود بودن منابع نفتی باید به تدریج با بیوپلیمر ها که از منابع تجدید شونده ساخته می شوند، جانشین شوند. بیوپلیمر از نظر بیوشیمی دان ها عبارت است از ماکرومولکول های بیولوژی که از تعداد زیادی زیر واحد کوچک و شبیه به هم که با اتصال کووالانسی به هم متصل شده اند ویک زنجیره طولانی را ایجاد می کنند، ساخته شده اند.

 

 در روند طبیعی، بیوپلیمر ها و یا همان ماکرومولکول ها، ترکیبات داخل سلولی هستند که قابلیت زنده ماندن را به ارگانیسم در شرایط سخت محیطی می دهند.مواد بیوپلیمری در شکل های گوناگونی توسعه یافته اند؛ بنابراین ظرفیت استفاده در صنایع گوناگون را دارند. توسعه مواد بیوپلیمری به چنددلیل اهمیت دارد. اول این که این مواد بر خلاف پلیمر های امروزی که از مواد نفتی به دست می آیند، به محیط زیست برگشت پذیر هستند؛ بنابراین موادآلوده کننده محیط زیست به شمار نمی آیند. در این خصوص مواد بیوپلیمری در ساخت پلاستیک ها به دو صورت استفاده قرار می شوند.

 

 اول استفاده از پلاستیک هایی که درآنها یک ماده تخریب پذیر(مانند نشاسته) به یک پلاستیک متداول (مانندپلی اتیلن) اضافه می شود، درنتیجه این ماده به افزایش سرعت تخریب پلاستیک کمک می کند. این مواد چند سالی هست که وارد بازار شده اند و با آن که کمک زیادی به کاهش زباله های پلاستیکی کرده اند، اما به دلیل این که در آنها از همان پلاستیک های متداول تخریب ناپذیر استفاده می شود و استفاده از مقدار زیادی مواد تخریب پذیر در پلاستیک ویژگی آن را تضعیف می کند، موقعیت چندان محکمی ندارند.

 

دوم استفاده از پلاستیک های تخریب پذیر ذاتی است که به دلیل ساختمان شیمیایی خاص به وسیله باکتری ها، آب یا آنزیم ها در طبیعت تخریب می شوند و خیلی سریع تر از نوع اول به محیط زیست بر می گردند، دردرجه دوم اهمیت مواد بیوپلیمری به وسیله موجودات زنده ساخته می شوند و در نتیجه در چرخه ساخت و تجزیه مواد بیولوژیک قرار می گیرند، پس هیچ گاه منابع آن محدود و تمام شدنی نیست، در حالی که مواد پلیمری و پلاستیکی امروزی از سوخت های فسیلی ساخته می شود که منابع آن محدود و تمام شدنی است. هر چند این منابع در حال حاضر و به ویژه در کشور ما به وفور یافت می شوند، ولی روزی تمام خواهند شد. سومین مزیت بیوپلیمر ها، اقتصادی بودن این مواد است، زیرا تولید بیوپلیمر نیاز زیادی به کارخانه و صنعت پیشرفته ندارد و با حداقل امکانات می توان به تولید آن مبادرت ورزید. همچنین قیمت بالای نفت خام، کشور ها را به سوی استفاده از این مواد سوق داده است.

 

هر چند امروزه برای کاربردهای بسیار خاص مانند نخ بخیه جراحی(نخ بخیه حل شونده) به کار می روند، ولی دیری نخواهد پایید که به استفاده گسترده از این پلیمر ها توجه خواهد شد. سه گروه از موجودات زنده می توانند بیوپلیمرها را تولید کنند که عبارتند از:گیاهان، جانوران و میکروارگانیسم ها که از این میان گیاهان و میکروارگانیسم ها اهمیت بیشتری دارند.

گیاهان تولیدکننده
بیشترین تحقیقات بیوپلیمری روی مهندسی ژنتیک گیاهان تولیدکننده فیبر مانند کتان، کنف و ... متمرکز شده است. به عبارت دیگر، توسعه واکنش های مولکولی درون سلولی گیاهان که به تولید مواد بیوپلیمری منجر می شود، مورد توجه مهندسان ژنتیک و بیوتکنولوژی قرار گرفته است. مواد بیوپلیمری که در سلول های گیاهی ساخته می شود، بیشتر از جنس پلی هیدروکسی بوتیرات (PHB) است. این ماده از نظر خصوصیات فیزیکی و مکانیکی بسیار شبیه پلی پروپیلن حاصل از مواد نفتی است. امروزه با همسانه سازی کردن ژن تولید کننده پلیمر پلی هیدروکسی بوتیرات در گیاهان معمولی که قابلیت تولید بیوپلیمر را ندارند، توانسته اند این محصول پلیمری را به طور انبوه تولید کنند. گیاهان، نیشکر، یونجه، درخت خردل و ذرت برای تولید این بیوپلیمر از طریق مهندسی ژنتیک انتخاب شده اند که ژن تولید کننده این پلیمر به داخل ژنوم این گیاهان وارد می شود و گیاه یادشده را به ساختن بیوپلیمر پلی هیدروکسی بوتیرات قادرمی سازد.

ارگانیه های تولیدکننده بیوپلیمر ها
درحدود ۸۰ سال قبل برای نخستین بار بیوپلیمر پلی هیدروکسی بوتیرات از باکتری باسیلوس مگاتریوم جدا سازی شد. ازآن پس دانشمندان بیوپلیمر به دنبال یافتن راه هایی هستند که تولیدات بیوپلیمری باکتریایی را توسعه دهند و به صورت تجاری درآورند.


بیوپلیمر هایی که سلول های باکتریایی قادر به تولید آن هستند و از آنها جداسازی شده اند، عبارتند از: پلی هیدروکسی آلکانوات (PHA)، پلی لاکتیک اسید (PLA) و پلی هیدروکسی بوتیرات (PHA). این بیوپلیمر ها از نظر خصوصیات فیزیکی به پلیمر های پلی استیلن و پلی پروپیلن شبیه هستند. بیوپلیمر های میکروبی در طبیعت به عنوان ترکیبات داخل سلولی میکروب ها یافت می شوند و بیشتر زمانی که باکتری ها در شرایط نامساعد محیطی قرار می گیرند، اقدام به تولید این مواد می کنند. این مواد در حالت طبیعی به عنوان یک منبع انرژی راحت و در دسترس عمل می کنند.

 

 همچنین هنگامی که محیط اطراف باکتری غنی از کربن باشد و از نظر دیگر مواد غذایی مورد استفاده باکتری دچار کمبود باشد، باکتری اقدام به ساخت بیوپلیمر های یادشده می کند. باکتری ها برای ساختن بیوپلیمر های PHA و PHB از واکنش های تخمیری استفاده می کنند که در این واکنش ها نیز ازمواد خام گوناگونی استفاده می شود. PHB به وسیله یک باکتری به نام استافیلوکوکوس اپیدرمیس ساخته می شود که روی تفاله های حاصل از واکنش های روغن گیری دانه های کنجد رشد می کند و این بیوپلیمر را می سازد.

 

 PHB در درون سیتوپلاسم باکتری به صورت دانه های ذخیره ای (اینکلوژن بادی) ذخیره می شود که این مواد را به وسیله سانتریفیوژ و واکنش های شست وشوی چند مرحله ای می توان استخراج و خالص سازی و ازآن استفاده کرد.در یک نتیجه گیری کلی در مورد استفاده از بیوپلیمر ها به جای پلاستیک ها و پلیمر های نفتی می توان گفت که با توجه به ماهیت و خصوصیات بیوپلیمر ها که مواد تجدید شونده و قابل برگشت به محیط زیست و یا به عبارتی دوست محیط زیست هستند، استفاده از آنها کاری معقول و اقتصادی خواهد بود. از سوی دیگر، با توجه به قیمت بالای نفت خام و محدود بودن منابع آن، استفاده از آن برای تولید مواد پلاستیکی که هم آلوده کننده محیط زیست است و هم در جامعه ما ارزش چندانی ندارد، کاری غیر اقتصادی است. پس امید می رود با توجه به سرعت روز افزون علم در زمینه مواد بیوپلیمری در بیشتر کشورها، درکشور ما نیز به این مقوله توجه بیشتری شود و با جانشین کردن مواد بیوپلیمری با پلیمر های نفتی، طلای سیاه را برای آیندگان به میراث بگذاریم.

شیمی محیط زیست

دید کلی

شیمی در محیط زیست ما نقش اساسی دارد. در واقع در بین مردم متداول است که بیشتر مسائل آلودگی جاری را به گردن مواد شیمیایی سنتزی و پدید آورندگان آنها بیاندازند. اما این نکته ناگفته می‌ماند که بیشتر مسائل زیست محیطی ، قرنها و دهه‌های گذشته ، مانند آلودگی میکروبی آب آشامیدنی ، تنها زمانی برطرف شدند که روشهای علمی بطور کلی و شیمی بطور اخص در مورد آنها بکار گرفته شد. افزایش شگفت‌ انگیز عمر انسان و بهبود کیفیت زندگی در دهه‌های اخیر به مقدار زیاد به علت پیشرفت شیمی و پدید آمدن مواد شیمیایی جدید بوده است.

محصولات فرعی اجسامی که برای بهتر شدن سلامتی و بالا رفتن استاندارد زندگی ما بکار گرفته شده‌اند، در مواردی بوسیله تنزل دادن سلامتی ما و همچنین سلامتی گیاهان و حیوانات ، همچون ش

مواد شیمیایی و نظرات دانشمندان

تا به حال در بین دانشمندان در این باره که آیا آلودگی بوسیله مواد شیمیایی در سطح کم بر روی سلامتی انسانها یا سایر موجودات زنده اثر مضر و نامطلوب دارد، اتفاق نظر نیست. بعضی از دانشمندان ، خطر هر گونه اثرهای زیان آوری را به علت تاثیر مواد شیمیایی سنتزی (بویژه موادی که در ایجاد سرطان دخالت دارند) بطور کامل رد می‌کنند. این مواد به غلظتهای خیلی بیشتر اجسام سمی طبیعی مانند آفت کشهایی که بوسیله گیاهان تولید می‌شود و ما در معرض آنها قرار داریم، اشاره می‌کنند. در انتهای دیگر این طیف ، دانشمندانی هستند که معتقدند مواد شیمیایی در محیط زیست نقش عمده‌ای در شروع انواع معینی از سرطانها و نواقص در انسانها و حیات وحش دارند.

مواد شیمیایی سمی و نوزادان

نگرانی جامعه ، با توجه به وجود مواد شیمیایی در محیط زیست معمولا مربوط به قابلیت آنها در ایجاد سرطان است. اما پژوهشگران کار خود را صرفا روی اثرهای سرطانزایی احتمالی متمرکز نمی‌کنند. دانشمندان به این موضوع پی برده‌اند که در مسائل مربوط به تولید مثل ، از جمله مسائلی که به نقص جنین می‌انجامد، در حیوانات آزمایشگاهی که در معرض غلظتهای زیاد مواد شیمیایی زیست محیطی قرار می‌گیرند به همان اندازه مشخص کننده است.

اخیرا برای پی بردن به اینکه آیا افرادی که مدتهای طولانی در معرض همان نوع مواد شیمیایی بوده‌اند، البته در سطوح کمتر ، نیز با خطر مشکلات تولید مثلی روبه رو هستند یا نه ، کارهای پژوهشی انجام شده است. برای آشکار ساختن اثرهای نسبتا ظریفی که احتمال می‌رود در انسانها رخ بدهد، لازم است جمعیتی پیدا کنیم و مورد بررسی قرار دهیم موقعیت جغرافیایی ، نوع کار ، یا رژیم غذایی آنها ممکن است این افراد را در معرض بیش از مقادیر میانگین از مواد شیمیایی مورد نظر قرار داده باشد.

راههای جلوگیری از آلودگی

این نکته روشن است که احتمالا سلامتی و رفاه انسانها از راههای ظریف اما موثری بوسیله غلظتهای کم از مواد شیمیایی در محیط زیست ما تحت تاثیر قرار می‌گیرد. از نظر تاریخی بطور ضمنی یا به طور صریح اینطور فرض شده بود که مواد شیمیایی منتشر شده در محیط زیست بوسیله طبیعت تحلیل خواهند رفت. اما امروزه می‌دانیم که چنین نیست. بسیاری از مواد پلیمری که امروزه در جامعه و صنعت تولید می‌شوند قرنها قابل تجزیه و بازگشت به چرخه طبیعی نیستند.

راهبرد اولیه این بود اغلب بوسیله جمع آوری و دور ریختن توده‌های زیادی از این مواد ، پیش از اینکه در محیط زیست پخش شوند، از رها شدن آنها جلوگیری شود. پس از جمع آوری ، آنها را به صورت اجسام جامد درمی‌آورند و در زمینهای بایر می‌ریزند. یک اشکال این قبیل راهبردها این است که آلاینده‌ها معمولا در این فرآیند منهدم نمی‌شوند بلکه صرفا به صورت مطلوب‌تری درمی‌آیند یا اینکه در محیط متفاوتی رسوب داده می‌شوند. راهبرد شیمی سبز که اکنون جای راه حل بالا را می‌گیرد، تجدید نظر در فرمول ‌بندی راههایی است که در سنتز مواد شیمیایی در درجه اول محصولات فرعی سمی تولید نشوند.

قلمروهای شیمی زیست

موضوع شیمی محیط زیست هم شامل اجسام و فرآیندهای طبیعی است که در یک محیط زیست پاکیزه حائز اهمیتند و هم اینکه مسائل آلودگی قابل ملاحظه‌ای را که مبنای شیمیایی دارند، دربرمی‌گیرد. اگر چه طبیعت اکثرا موضوعهای مورد بحث به گونه‌ای است که بیش از یک محیط فیزیکی یا یک ترکیب را دربرمی‌گیرند، اما مطالب مورد بحث شیمی محیط زیست به اینگونه طبقه بندی کلی می‌شوند:

مسائل محیط زیستی بطور کلی ناشی از افزایش جمعیت دنیاست افزون بر این بسیاری از مسائل زیست محیطی وجود دارند که مورد بحث شیمی محیط زیست نیستند، زیرا این مسائل عمدتا منشا شیمیایی ندارندبهی ما را دنبال می‌کنند. بطور خلاصه ، غلبه ما بر آلودگی گسترده زیست شناختی و بالا بردن استانداردهای سلامتی و ثروت مادی در کشورهای توسعه یافته به قیمت آلودگی شیمیایی گسترده کره زمین در سطح کم تمام شده است.

تماس روزانه با آلاینده های سمی

تصویر

 

دید کلی

قوانین محیط زیست ، کیفیت هوای محیط باز را بهبود بخشیده است. اما به مشکلات فضای بسته توجه زیادی نشده است. تصور کنید قاتلی آزاد است، کسی که به قربانیان خود شلیک می‌کند و می‌گریزد. بدون شک بررسی‌های پلیس با مشاده صحنه جنایت و جستجوی دقیق نشانه و سرنخ همراه است. آنها از جسد عکس می‌گیرند، انگشت نگاری می‌کنند و از شهود بازجویی می‌کنند. گلوله ، آزمایش می‌شود. سپس فرد مسئول ، این اطلاعات را برای تشخیص دقیق آنکه چه کسی مجرم است، بکار می‌برد.

اما در نظر بگیرید که پلیس روش دیگری اتخاذ کند. چه خواهد شد اگر آنها تصمیم بگیرند با آزمودن تمام سلاحهایی که اخیرا آتش شده‌اند، شروع کنند؟ مطمئنا اسلحه مورد نظر یکی از همین سلاحهاست و آنها درست می‌گویند، حتی ممکن است موفق به شناسایی قاتل بشوند، اما پیش از آن باید برای آزمودن سریع همه سلاحهای گرمی که در درست مامورات قانون ، سربازان و شکارچیان کبک است، انرژی فراوانی صرف کنند. در دنیایی با منابع نامحدود ، احتمالا آنها پیش از آنکه به پیدا کردن مقصر نزدیک شوند، وقت و پول بسیاری را هدر می‌دهند.

در کمال تعجب ، اداراتی که مسئولیت حفاظت از عموم مردم را در برابر آلاینده های سمی به عهده دارند، از شیوه دوم تبعیت می‌کنند. غالب قوانین زیست محیطی تنها مقدار ضایعاتی را که بالقوه خطرناکند، در آب و هوا کنترل می‌کنند، نه میزان تماس واقعی مردم با این آلاینده را.

تمرکزبه نشر به جای تماس واقعی

تمرکز بیشتر به نشر به جای تماس ، اساسا این واقعیت را که مواد سمی تنها در صورتی که به بدن برسند، برای سلامتی مشکل ایجاد می‌کنند، نادیده می‌گیرد.

این غفلت تا حدودی قابل درک است. برای مدتهای مدید ، اطلاعات کمی درباره میزان تماس بیشتر شهروندان در معرض آلودگی‌هایی که تحت پوشش مقررات ملی است، وجود داشت. قانون گذاری به ندرت عده افرادی را که آلاینده ای خاص بر آنها اثر می‌گذارد و شدت تاثیر یا منابع خاص ماده شیمیایی مضر را با قطعیت می‌شناختند. در نتیجه مقامهای مسئول غالبا روی محدود ساختن منابع آشکار ، مثل خودروها و کارخانه‌ها ، متمرکز شدند و در شناسایی و تعیین بسیاری از منابع مهم که کمتر آشکارند، با شکست مواجه شدند.

خوشبختانه ، دانش ارزیابی میزان تماس افراد با مواد سمی پیشرفت کرده است. دانشمندان بویژه ، دستگاههای تجزیه‌ای بسیار حساس و ابزارهای نمایشگر قابل حمل را ابداع کرده‌اند. پژوهشگران این تجهیزات را در مقیاس بزرگ بکار برده‌اند تا نشان دهند که افراد در کجا و چگونه در معرض مواد شیمیایی بالقوه خطرناک واقع می‌شوند.

<>تصویر

تماس شخصی

در سال 1980، اولین تلاش جدی برای برآورد تماس روزمره عموم مردم در معرض مواد سمی آغاز شد. این برنامه ، ابتدا به وسیله پژوهشگاه تری انگل در کارولینای شمالی و سایر سازمانهای پژوهشی پیمانکار انجام گرفت و سپس توسعه یافت و تا حدود بیست و چهار برنامه مطالعاتی را در 14 ایالت امریکا در برگرفت. پژوهشگران تحت حمایت بخش خصوصی با استفاده از همان روشها در ایالت پانزدهم (آلاسکا) و در یک استان کانادا ، مطالعات مشابهی انجام دادند.

در اغلب این بررسی‌ها ، دستگاههای نمایشگر بکار می‌رفت. این دستگاهها آن‌قدر سبک و کوچک بود که افراد می‌توانستند ضمن انجام فعالیتهای معمول خود ، آن را حمل کنند. این ابزارها نشان داد که چه آلودگی‌هایی و به چه مقدار در نزدیکی افراد وجود دارد. در پاره ای موارد ، پژوهشگران ، اندازه‌گیریهایی روی غذا و آب مصرفی نیز انجام دادند. آنها ، در مواردی ، مقدار آلاینده های مختلف خون را روی نمونه‌های تنفسی تعیین کردند.

این مطالعات ، فراوانی ترکیبات آلی فرار ، منوکسید کربن ، آفت‌کشها یا ذرات خطرناک را در زندگی روزمره بیش از 3000 نفر آزمود. این افراد در واقع به‌عنوان نماینده جمعیتی بودند که در نواحی شهری و حومه آمریکای شمالی زندگی می‌کردند. نمونه‌ها با جزئیات کافی تجزیه شیمیایی شدند تا مواد شیمیایی که افراد هر روزه در معرض آن هستند، مشخص شود.

بیشتر در این بررسی‌ها ، ترکیبات فرار بویژه برای بررسی حدود 30 ماده شیمیایی مختلف که بسیاری از آنها عوامل شناخته شده سرطان در انسان و جانوران‌اند، آزمایش شد.

نتایج تحقیقات

اینکه تماسهایی که اغلب مردم با این مواد دارند، خطر بزرگی برای سلامتی آنها دارد یا خیر روشن نیست، زیرا تخمین حداقل مقدار لازم هر ترکیب برای آنکه باعث بیماری شود بسیار سخت است. هنوز هم نتایج مطالعات گیج کننده است: تماس اغلب شهروندان با آلاینده هایی که بالقوه سمی‌اند، در محیطهای بسته اساسا پاکیزه تصور می‌شوند، مثل منازل ، ادارات و خودروها و نه محیطهای باز ، خیلی محتمل است.

قرار گرفتن در معرض آلودگی در محیطهایی که معمولا مورد توجه قوانین زیست محیطی‌اند مثلا کارخانجات یا صنایع محلی در مقایسه قابل صرف نظر کردن است. حتی در شهرهای بایون و الیزابت در نیوجرسی که در آنها واحدهای فراورش شیمیایی زیادی وجود دارد، ثابت شده است که مقدار ترکیب آلی فرار در فضای بسته از فضای باز بیشتر است. مشخص شده است که منابع اصلی معمولا محصولات مصرفی‌ ، از خوشبوکننده‌های هوا ، پاک‌کننده‌ها و انواع مصالح ساختمانی‌اند.

معضل آلودگی به بنزن در محیطهای بسته

آیا اقلامی که هرروزه بشر با خوشحالی وارد منازل خود می کند، بیش از آلودگی‌های صنعتی برای سلامتی او مضرند، حتی در مورد اجتماعاتی که در محاصره واحدهای صنعتی هستند؟ پاسخ خیلی کوتاه ، بلی است. مثلا بنزن که غلظت زیاد آن در بدن ایجاد لوسمی (سرطان خون) می‌کند، در بنزین و بعضی محصولات خانگی وجود دارد. همچنین ، این ماده یکی از حدود 4000 ماده شیمایی است که در دود دخانیات یافت می‌شود، بنابراین زندگی با یک نفر سیگاری ، فرد را به مقدار زیاد در معرض بنزن قرار می‌دهد.

در سال 1985، پژوهشگران همه شواهد موجود را درباره آنکه چگونه چند صد نفر که در 5 ایالت مختلف بودند در معرض این ترکیب قرار گرفتند، جمع بندی کردند. ایشان دریافتند میانگین غلظت بنزنی که این افراد تنفس کرده بودند، نزدیک به سه برابر میزان آن در فضای باز بود. طبق محاسبات نزدیک به 45 درصد از کل تماس جمعیت آمریکا با بنزن ، از سیگار (یا تنفس دود سیگار دیگران) ، 36 درصد از تنفس بنزین یا مصرف انواع محصولات متداول (مثل چسب) و 16 درصد از سایر منابع خانگی (نظیر رنگها یا بنزین ذخیره شده در زیرزمینها یا توقفگاهها) ناشی می‌شود و تنها 3 درصد از میانگین میزان تماس افراد به آلودگی صنعتی نسبت داده می‌شود.

قانونگذاران به بیراهه می روند.

در مقابل ، قانونگذاری معمولا تنها به مقدار کل بنزنی که در محیط عمومی رها می‌شود، توجه می‌کنند که بیشترین سهم را در آن ، خودروها (82 درصد) ، صنعت (14 درصد) و منابع خانگی (3 درصد) دارند. سیگار تنها 1/0 درصد کل را شامل می‌شود. پژوهشگران نشان دادند که با قطع کامل نشر بنزن از واحدهای صنعتی این مشکل ابدا حل نمی‌شود. در حالی‌که کاهش متوسط دود سیگار ( کوچکترین منبع بنزن در جو ) به میزان قابل ملاحظه‌ای احتمال بیماری‌های ناشی از بنزن را کم می‌کند.

<>تصویر

سایر منابع عمده آلوده کننده

بسیاری دیگر از ترکیبات آلی فرار که در غلظتهای زیاد خیلی سمی‌اند، در محیطهای بسته فراوانتر از محیطهای بازند. مثلا تتراکلرو اتیلن (موسوم به پرکلرو اتیلن یا پرک) که مشخص شده عامل سرطان حیوانات آزمایشگاهی است، در خشک شویی‌ها مصرف می‌شود. بنابراین وقتی مردم در ساختمانی که امکانات دارد، زندگی می‌کنند، لباسهایی را که اخیرا خشک‌شویی شده است، می‌پوشند یا لباسهای حاوی این ماده شیمیایی را در کمد خویش نگه می‌دارند، بیشترین حد تماس اتفاق می‌افتد.

مواد ضد بید ، ضدعفونی کننده‌های توالتها و بوگیرها منابع اصلی تماس با پارادی‌کلرو بنزن‌اند که در جانوران باعث سرطان میشود. مطالعات متافقا" نشان داده است که تقریبا همه تماس با پارادی‌کلرو بنزن از منبع داخل منزل ناشی می‌شود نه از نشر صنعتی یا زباله‌های مضر.

راههای پیشگیری از تماس

با آنکه تخمین خطرهای سلامتی با قطعیت همراه نیست، روشن است که تماس کمتر با ترکیبات فرار سمی بهتر است، اغلب مردم می‌توانند با اجتناب از محصولاتی که حاوی چنین آلودگیهایی‌اند، تماس با مواد بالقوه مضر را محدود کنند. اما اجتناب از سایر بخارهای مضر مشکل است. مثلا ، منابع اصلی تماس با کلروفرم (که گازی است نگران کننده ، زیرا در حیواناتی که در معرض غلظت زیاد آن قرار می‌گیرند سرطان ایجاد می‌کند) دوش آب ، آب جوش و مواد شوینده لباسهاست.

این ماده از کلری که برای تصفیه منابع آبی مصرف می‌شود، تشکیل می‌گردد. از آنجا که مردم ملزم به استفاده از آب لوله‌کشی هستند، تنها راه به حداقل رساندن تماس با کلروفرم ، نوشیدن آب بطری (یا آب شیر که از یک صافی زغالی مرغوب رد شده باشد) و بهبود تهویه در حمام و لباسشویی‌هاست.

پیشگیری از تماس با منوکسید کربن

جریان هوای خوب نیز می‌تواند به کاهش تماس با منوکسید کربن کمک کند. منوکسید کربن ، محصول احتراقی ناقص است، اکسیژن خون را کاهش می‌دهد و تنفس مقادیری از آن که معمولا در محیطهای بسته وجود دارد، بویژه برای افرادی که ناراحتی قلبی دارند، مضر است. با آنکه مطالعات انجام گرفته در اوایل دهه 1980 نشان می‌داد که مقدار کربن منوکسید در افراد درون وسایط نقلیه موتوری یا نزدیک به آنها به شدت افزایش می‌یابد، سایر تحقیقات نشان داد که لوازم خانگی ، مثل بخاری‌های گازی با عملکرد ضعیف ، کباب‌پزها و کوره‌ها نیز می‌توانند باعث شرایط بسیار ناسالم- حتی مرگ - شوند.

خوشبختانه ، در آمریکا ، هماهنگ با کاهش مقدار نشر کربن منوکسید از خودروها که طبق قوانین فدرال انجام گرفت، مقدار آن در محیطهای باز نیز رو به کاهش گذاشت. پیشرفت بیش از این مشکل خواهد بود. زیرا در مجموع مردم آمریکا هم‌اکنون در محیطهای بسته بیش از محیطهای باز در معرض کربن منوکسید قرار دارند.

خطر ذرات معلق

نگرانی زیست محیطی دیگری که در محیطهای بسته بیشتر است، خطر ذرات معلق در هواست. در یک بررسی ، پژوهشگران نمایشگرهای کوچکی را برای جمع آوری ذرات داخل و اطراف 178 منزل واقع در کنار رودخانه کالیف بکار بردند. نتایج نشان داد که ذرات با قطر 10 میکرون یا کمتر وجود دارند که برای نفوذ در ریه به قدر کافی کوچکند.
در عین ناباوری ، تماس روزانه ، از آنچه که با توجه به اندازه گیری همزمان مقدار ذرات معلق در نمونه‌های هوا در محیطهای بسته و باز انتظار می‌رفت، حدود 60 درصد بیشتر بود.

حداقل بخشی از این افزایش تماس به آن دلیل است که افراد در هوا شناورند نیستند، بلکه ابر غبار حامل ذرات محیط اطراف خود را ضمن حرکت جابه جا می‌کنند. این پژوهشگران نشان دادند که اکثر این ذرات ریز بر اثر احتراق (مثل سیگار ، پخت و پز ، سوختن شمع یا آتش چوب) تشکیل می‌شوند. پیدا شدن چنین آلاینده‌هایی در محیطهای بسته مشکل آفرین است، زیرا مطالعات همه گیری شناسی اخیرا ارتباط افزایش غلظت ذرات ریز در محیطهای باز را با مرگ زودرس نشان داده است.

غلظت آفت کشها در محیطهای بسته

نتایج مطالعات آلاینده های محیطهای بسته که در اواخر دهه 1980 که در جکسون ویل و اسپرنیگ فیلد انجام گرفت، نگرانی بیشتری را موجب شد. بررسی کنندگان دریافته‌اند که در این دو محل ، غلظت آفت کشها در هوای محیطهای بسته دست کم 5 برابر (نوعا 10 برابر یا بیشتر) از هوای باز بیشتر است و این حشره کشهایی را شامل می‌شود که مصرف آنها تنها در محیطهای باز مورد تایید است.

مواد شیمیایی که در پی ساختمان این منازل علیه موریانه‌ها بکار رفته بود، به درون منازل راه یافته بود. این مواد سمی ممکن است از طریق کفش افراد یا از طریق خاک به شکل گاز وارد خانه‌ها شده باشد. کلردان (در سال 1988 از فهرست محصولات مصرفی در منازل حذف شد) و سایر آفت کشها که هوای بسته را آلوده می‌کنند، بیش از آنچه که در مواد غذایی یافت می‌شوند، باعث تماس می‌شوند.

بعلاوه ، گاهی مردم ، آفت کشهای نامناسب را مستقیما روی سطوح محیطهای بسته بکار می‌برند، بدون آنکه بدانند خودشان را تا حد زیادی در معرض آنها قرار می‌دهند. حتی خانه‌دارهای روشنفکر نیز غالبا بکار بردن مواد شیمیایی را خطرناک نمی‌دانند. آفت کشها که در محیط باز طی چند روز تخریب می‌شوند، ممکن است در قالبها که آنها را از تخریب به وسیله نور خورشید و باکتریها محافظت می‌کنند، سالها باقی بمانند. این پایداری را می‌توان با اندازه گیری آفت کش د.د.ت (دی کلرودی فنیل تری کلرواتان) که در سال 1972 بدلیل سمی بودن ، مصرف آن در آمریکا ممنوع شد، نشان داد.

در بیش از نصف خانه هایی که بررسی شد، غلظت هفت ترکیب آلی سمی موسوم به هیدروکربنهای آروماتیک چند حلقه‌ای (ترکیباتی که از احتراق ناقص حاصل شده و باعث سرطان در جانوران شده و تصور می‌شود که در انسان نیز سرطان بوجود می‌آورد)، بیش از مقدار مجاز در خاک نواحی پرجمعیت مسکونی بوده است.

انسان کوچک ، مشکلات بزرگ

آفت کشها و ترکیبات آلی فرار که در محیطهای بسته وجود دارند، هر ساله باعث 300 مورد سرطان در آمریکا می‌شوند، این مواد برای افراد غیر سیگاری به اندازه رادون (گاز پرتوزا طبیعی که از طریق پی وارد بسیاری از منازل می‌شود) یا دود غیر مستفیم سیگار تهدید کننده‌اند. غبار سمی منازل بخصوص برای بچه‌های کوچک که کف خانه بازی می‌کنند، روی قالی‌ها می‌خزند و مرتبا دستها را در دهان قرار می‌دهند، خطرناک است.

کودکان بسیار مستعدند، اندامهای در حال رشد آنها بیشتر آماده آسیب دیدگی است، آنها کسر کوچکی از وزن بدن بزرگسالان را دارند و ممکن است 5 برابر بیشتر از آنها غبار ببلعند، بطور متوسط 100 میلی گرم در روز.

<>تصویر

تخمین تقریبی میزان آلودگی

قبل از سال 1990، زمانی که سازمان حفاظت از محیط زیست و وزارت مسکن و شهرسازی آمریکا روشهای استاندارد را برای نمونه‌برداری غبار قالیها ، مبلمان و سایر سطوح تبیین کردند، برآورد کمی خطر موجود برای بچه ها مشکل بود. با این حال از آنوقت روشهای بهبود یافته به دانشمندان این امکان را دادند تا بیانی واقعی از میزان تماس ارائه کنند. مثلا ما هم اکنون قادریم تخمین بزنیم که هر کودک شهری بطور متوسط روزانه 110 نانوگرم بنزوپیرن ، سمی‌ترین هیدروکربن آروماتیک چند حلقه‌ای را می‌بلعد.

اگر چه به سختی می‌توان با قطعیت گفت گه این مقدار چه اندازه احتمال ابتلای طفل به سرطان را در بعضی از نقاط بدن افزایش می‌دهد، ولی این مقدار هشدار دهنده بوده و با آنچه کودک می‌تواند از کشیدن سه نخ سیار بدست آورد، معادل است.

همچنین تحقیقات نشان داد که غبار خانگی برای بچه‌ها منبع اصلی تماس با کادمیم ، سرب و سایر فلزات سنگین و همچنین پلی‌کلرو بی‌فنیلها و سایر آلاینده های آلی پایدار است. قالی‌ها بیش از همه مشکل آفرینند، زیرا حتی اگر مرتب به روش متداول با جاروبرقی تمیز شوند، باز هم در عمقشان ترکیبات سمی (و همچنین باکتریهای خطرناک و حساسیت آورهای مولد آسم) عمل می‌کنند. قالبهای با پرز و موی بلند مشکلاتی بیش از قالبهای صاف دارند، کیفهایی که با چوب ، کاشی با مکالئوم پوشیده می‌شوند، بسیار آسان تمیز می‌شوند و مناسبند.

مقابله

بیرون آوردن کفش از پا ، پیش از ورود ، حتی بیش از پاک کردن کفش در کاهش مقدار آلاینده های سمی محیط داخل که محیط بیشتر منازل را آلوده می‌کند (مثل سرب رنگهای کنده شده و آفت کشهای خاک اطراف پی ساختمان) موثر است. افراد می‌توانند با اعمال این نکات برای جلوگیری از ورود غبار و بکار بردن جاروبرقی‌های موثر (انواعی که به برسهای گردان مجهزند و ترجیحا مجهز به حسگرهای غبار) ، مقدار سرب و بسیاری از مواد سمی دیگر را در قالی‌هایشان تا یکدهم (یا ، در بعضی موارد ، یک صدم) کاهش دهند.

ناآگاهی

بدبختانه بیشتر مردم از حضور همیشگی آلودگی‌ها در فضای بسته و روشهای کاهش آن بی‌اطلاع اند. روش ابتکاری انجمن ریه آمریکا در پیدا کردن راه چاره آن است که داوطلبان آموزش دیده را به منازل بفرستد تا از منازل بازدید و به ساکنان آن در محدود ساختن خطرهای زیست محیطی خانگی ، کمک کنند.

مشکل با قانون

هم‌اکنون یافته‌های فراوانی از مطالعات چند جانبه درباره ‌تماس روزانه مردم در اختیار است و همگی به یک نتیجه گیری اشاره می‌کنند که همان آلاینده های تحت پوشش قوانین زیست محیطی در فضای باز ، معمولا به میزان بیشتر در عموم اماکن مسکونی وجود دارند. این موقعیت ، دست کم تا حدودی نتیجه تلاش سه دهه اخیر در کنترل نشر از خودروها و صنایع در بهبود کیفیت هوای محیط باز بوده است.

از بین صدها آلاینده هوا که تحت کنترل قوانین جاری قرار دارند، تنها اوزون و گوگرد دی‌کسید در محیط باز بیشترند. بنابراین عجیب است که هنوز توجه بیشتری به آلودگی‌های محیط بسته که تشخیص منابع اصلی آن مشکل نیست، معطوف نشده است. در واقع ، آنها درست زیر دماغ مردمند: ضدبیدها ، آفت کشها ، حلالها ، بوبرها ، پاک کننده ها ، لباسهای خشک شویی شده ، قالبهای غبار آلوده رنگ ، نئوپان ، چسبها و دود ناشی از پخت و پز و گرمایش تنها بعضی از این مواردند.

نمک طعام

 

سدیم کلرید یکی ازضروری ترین ترکیبات درغذای انسان و حیوان می باشد . ونیز زیاده روی درمصرف آن باعث اختلالاتی ازجمله فشار خون می گردد.یکی از مهمترین موادخام درصنایع شیمیایی  برای تهیه   Na2CO3 و  NaOH   و کلر می باشد.به عنوان نگهدارنده درصنایع غذایی  و برای ذوب کردن یخ وبرف کاربرد دارد .  بلورهای مکعبی شکل آن  دارای کئوردینانس هشت وجهی و هریک از دو یون +Na  و - Cl دارای شکل بلوری مکعبی تنگ چیده ( ccp ) و بدون آب تبلور است .



سدیم کلرید جامدی یونی٬ با  دمای ذوب  801 و دمای جوش 1439 وچگالی   17/2 g/cm3 می باشد.به میزان تقریبا 3% درآب دریا وجوددارد ودرصنعت ازآب دریا استخراج می گردد . NaCl خالص رابا عبوردادن گاز HCl  از درون NaOH  به دست می آورند.

گرمای تشکیل  Na Cl به حالت گاز مجموع انرژی یونش یک مول اتم های سدیم وانرژی یک مول الکترونخواهی اتم های کلر می باشد .

                مول /کیلو ژول        9/495           Na ( g )    -------->  Na+ ( g)  +  e   

               مول /کیلو ژول        325-            ( Cl ( g )   +   e   -------->    Cl- ( g  

              Na: [Ne] 3s1 + Cl: [Ne] 3s23p5 => Na+: [Ne]    +  Cl-: [Ne] 3s23p6 

 مول /کیلو ژول 9/170  

  همان طور که می بینید گرمای تشکیلNa Cl   به حالت گاز مثبت است .اما باید توجه داشت هنگامی که یون های سدیم وکلر گرد هم می آیند و بلورنمک طعام  را می سازند   گرمای زیادی آزاد می گردد. گرمای تشکیل Na Cl به حالت جامد 153/ 411-  می باشد . وباتوجه به این که درحالت مذاب رسانای الکتریسیته می باشد . این موضوع بیانگر آن است که این ماده یک جامد یونی است.

منابع :

  شیمی فلزات : تالیف دکتر منصور عابدینی

فرهنگ شیمی : تالیف دیوید ویلیام آرتور شارپ

شیمی بانگرش کاربردی : تالیف اسمیت ٬ اسموت ٬  پرایس

شیمی پایه: تالیف مسترتن ٬  اسلاوینسکی  ٬ والفورد

کاربرد مواد نانومتخلخل در پلیمریزاسیون و ایزومریزاسیون

علوم و فناوری نانو در دهه 1980 میلادی توسط فیزیکدان آمریکایی "ریچارد فاینمن" تشریح شد. در این فناوری خواص فیزیکی مواد نانوابعاد در حوزه‌ای بین اثرات کوانتومی و خواص توده قرار می‌گیرد. علوم نانو محصول مطالعات دانشمندان در رشته‌های مختلف بوده است که با راه‌حل‌ها و روش‌های گوناگون و خلاقانه به صورت علوم بین رشته‌ای درآمده است . محققان و سیاستگذاران سراسر جهان انتظار دارند که علوم نانو موجب تغییرات وسیعی در نحوه زندگی شود.
در این نوشتار، ضمن بررسی فرایند کراکینگ / شکست کاتالیستی، انواع کاتالیست‌های مورد استفاده در این فرایند و تاثیر فناوری نانو بر آنها که منجر به ایجاد نسل جدیدی از کاتالیست‌ها با نام "نانوکاتالیست‌ها" شده، بررسی گردیده است.
مقدمه
پالایش نفت با تقطیر جزء به ‌جزء نفت‌خام به گروه‌های هیدروکربنی شروع شده و خواص محصولات مستقیماً متناسب با نحوه انجام فرآیند تبدیل نفت می‌باشد.
فرآیندها و عملیات پالایش نفت به پنج بخش اصلی تقسیم می‌شود :
الف) تفکیک (تقطیر) ب) فرآیندهای تبدیلی که اندازه و ساختار ملکولی هیدروکربن‌ها را تغییر می‌دهند این فرآیندها شامل: ب-1) تجزیه (تقسیم) ب-2) همسان‌سازی(ترکیب) ب-3) جایگزینی(نوآرائی) می‌باشند.
ج) فرآیندهای عمل‌آوری د) تنظیم و اختلاط
فرایند تجزیه که از زیر شاخه‌های فرایندهای تبدیلی محسوب می‌شود، شامل هیدروکراکینگ، شکست کاتالیستی و شکست گرمایی می‌شود.
پلیمریزاسیون
پلیمریزاسیون در صنایع پتروشیمی، فرآیند تبدیل گازهای اولفین سبک، شامل اتیلن، پروپیلن و بوتیلن به هیدروکربن‌های با وزن مولکولی بیشتر و عدد اکتان بالاتر می‌باشد که به‌عنوان مخلوطهای سوختی مرغوب استفاده می‌شود. درطی این فرآیند 2 یا بیشتر مولکول‌های اولفین یکسان، تشکیل یک مولکول با عناصر یکسان و خواص یکسان به‌عنوان مولکول‌های جدید می‌دهند.
پلیمریزاسیون می‌تواند بطور گرمایی یا در حضور کاتالیست دردمای پایین‌تر اتفاق بیفتد.

شکل 1 ) نمایه فرایند پلیمریزاسیون

ایزومریزاسیون
در ایزومریزاسیون بوتان نرمال، پنتان نرمال و هگزان نرمال، به ایزوپارافین‌های مربوطه با عدد اکتان بالاتر تبدیل می‌شود. پارافین‌های با زنجیره مستقیم، به زنجیره‌های شاخه‌دار با همان تعداد اتم ولی با ساختار هندسی متفاوت تبدیل می‌شوند.
محصولات ایزو بوتان این واحد، خوراک واحد آلکیلاسیون بوده و ایزوپنتان و ایزوهگزان برای مخلوط گازوئیل بکار می‌رود.
کاربردهای فناوری نانو در پلیمریزاسیون و ایزومریزاسیون
پلیمریزاسیون
به‌علت اینکه پلیمر شدن در این‌جا به معنی واقعی کلمه اتفاق نمی‌افتد بلکه واکنش تا تشکیل دی‌مر‌ها و تری‌مرها خاتمه می‌یابد لذا باید طراحی فضای واکنش به گونه‌ای صورت گیرد که با تشکیل دی‌مرها واکنش ادامه نیابد لذا می‌توان از مواد نانومتخلخلی استفاده کرد که ابعاد کانال‌های آن برای تحقق این امر مناسب باشند.این مواد نانوتخلخل را می‌توان نانوراکتور نامید. در این زمینه به کار "سانو" و "اومی" اشاره کرد که از سیلیکا مزوپروس به عنوان نانو راکتور برای پلیمریزاسیون اولفین‌ها استفاده کرده‌اند.[1]

در این روش ماده متخلخل MCM-41 حاوی فلز توسط روش Post – Synthesis با ترکیبات ارگانومتالیک یا آلکوکسید آماده شد و به عنوان نانوراکتور برای فرآیند پلیمریزاسیون اولفین بکار رفت. در حقیقت MCM-41 حاوی فلز به عنوان کوکاتالیست غیرهمگن به‌ کار می‌رود. [1]
ایزومریزاسیون
به دلیل اینکه کانال‌های مواد متخلخل مکان مناسبی برای انجام واکنش‌های شیمیایی می‌باشد می‌توان از نانومواد متخلخل برای این منظور استفاده کرد. این کار در واکنش مشابه پتروشیمی مورد بررسی قرار گرفته است. به عنوان مثال بائر و همکاران زئولیت‌های نانوساختار HZSM – 5 را در ایزومریزاسیون زایلن بررسی کرده‌اند.[2]
هیدروژن در جداکننده‌های با فشار عملیاتی بالا (Separator)، جدا شده و کلرید هیدروژن در ستون جداساز (Stripper) حذف می‌شود. حاصل آن که مخلوط بوتان بدست آمده می باشد وارد تفکیک‌کننده (Fractionator) شده، در آن بوتان از ایزوبوتان جدا می‌شود.در کلیه موارد بالا می‌توان از نانومواد متخلخل کربنی برای جداسازی گازها استفاده کرد.
در فرایند ایزومریزاسیون می‌توان به کاربردن متنوعی از مواد نانوساختار اشاره کرد همچنان که در طی تحقیقاتی برای پیدا کردن نانومواد مناسب برای فرایند ایزومریزاسیون آنتونلی و همکاران از میکروقفس های توخالی زیرکونیا با استفاده از پایه های مالسیلی کروی استفاده کرده‌اند.[3‍‍]

مراجع
 : 1Tsuneji Sano and Yasunori Oumi
2Catalysis Surveys from Asia Volume 8, Number 4 December 2004 295 - 304 Authors : Shim H.; Phillips J.1; Fonseca I.M.; Carabinerio S.
Source : Applied Catalysis A: General, November 2002, vol. 237, no. 1, pp. 41-51(11)
 : 3Antonelli D.M , Micro Porous & mesoporous Mat.vol 28

  1Tsuneji Sano and Yasunori Oum

2Bauer , Frank et.al

3Antonelli D.M

انواع چسب‌ها

انواع چسب‌ها

چسب‌هایی که توسط واکنش شیمیایی سخت می‌شوند

چسب‌های اپوکسیدی:

اپوکسیدها ، بهترین نوع چسبهای شناخته شده ساختمانی هستند و بیشترین کاربرد را دارند. رزین اپوکسی که اغلب در حالت معمول استفاده می‌شود، معمولا دی گیلیسریل اتراز بیس فنل DGEBA)A) نامیده می‌شود و بوسیله واکنش نمک سدیم از بیس فنل A با اپی کلروهیدرین ساخته می‌شود. آمینهای آروماتیک و آلیفاتیک به عنوان عامل سخت کننده استفاده می‌شوند. این چسب‌ها به چوب ، فلزات ، شیشه ، بتن ، سرامیک‌ها و پلاستیک‌های سخت بخوبی می‌چسبند و در مقابل روغن‌ها ، آب ، اسیدهای رقیق ، بازها و اکثر حلال‌ها مقاوم هستند. بنابراین کاربرد بیشتری در چسباندن کفپوش‌های وینیلی در سرویس‌ها و مکان‌های خیس و به سطوح فلزی دارند.

چسب‌های فنولیک برای فلزات:

وقتی که فنل با مقدار اضافی فرمالدئید تحت شرایط بازی در محلول آبی واکنش کند، محصول که تحت عنوان رزول شناخته شده و الیگومری شامل فنل‌های پلدار شده توسط اتروگرومتیلن روی حلقه‌های بنزن می‌باشد، بدست می‌آید. برای جلوگیری از تشکیل حفره‌های پر شده از بخار ، اتصالات چسب‌های فنولیک تحت فشار ، معمولا بین صفحات پهن فولادی گرم شده توسط پرس هیدرولیک سخت می‌شوند. بدلیل شکننده بودن فنولیکها ، پلیمرهایی از جمله پلی وینیل فرمال ، پلی وینیل بوتیرال ، اپوکسیدها و لاستیک نیتریل اضافه می‌شود تا سخت‌تر گردند.

چسب‌های تراکمی فرمالدئید برای چوب:

تعدادی از چسب‌های مورد استفاده برای چوب نتیجه تراکم فرمالدئید با فنول و رزوسینول (1و3 دی هیدروکسی بنزن) هستند. بقیه با اوره یا ملامین متراکم می‌شوند.

چسب‌های آکریلیک:

چسب‌های ساختاری شامل منومرهای آکریلیک توسط افزایشی رادیکال آزاد در دمای محیط سخت می‌شوند. منومر اصلی ، متیل متاکریلات (MMA) می‌باشد، اما موارد دیگری از قبیل اسید متاکریلات برای بهبود چسبندگی به فلزات بوسیله تشکیل نمکهای کربوکسیلات و بهبود مقاومت گرمایی و اتیلن گلیکول دی متیل اکریلات برای شبکه‌ای کردن نیز ممکن است مورد استفاده قرار گیرد.

کلروسولفونات پلی اتیلن ، یک عامل سخت کننده لاستیک است و کیومن هیدورپراکساید و N,N دی متیلن آنیلین ، اجزاء یک آغازگر اکسایشی- کاهشی هستند. پیوند دهنده هایی که برای اتصالات محکم مصنوعی به استخوان‌های انسان و پوششهای چینی برای دندان‌ها استفاده می‌شود نیز بر مبنای MMA هستند و بطورکلی برای جسباندن فلزات ، سرامیک‌ها ، بیشتر پلاستیک‌ها و لاستیک‌ها استفاده می‌شود و اتصالات پرقدرتی را ایجاد می‌کنند.

چسب‌های غیر هوازی:

چسب‌های غیر هوازی در غیاب اکسیژن که یک بازدارنده پلیمر شدن است، سخت می‌گردد. این چسب‌ها اغلب بر پایه دی متاکریلات‌هایی از پلی اتیلن گلیکول هستند. کاربرد این چسب‌ها ، اغلب در محل اتصال چرخ دنده ها ، تقویت اتصالات استوانه‌ای و برای دزدگیری می‌باشد.

چسب های پلی سولفیدی:

پلی سولفیدها در ابتدا به عنوان دزدگیر استفاده می‌شدند و یک کاربرد مهم دزدگیری لبه‌های آینه‌های دوبل می‌باشد. هر دو برای اینکه واحدها را باهم نگه دارند و مانعی در برابر نفوذ رطوبت ایجاد کنند. آنها به وسیله بیس (2- کلرواتیل فرمال) با سدیم پلی سولفید تهیه می‌شوند و به منظور کاهش قیمت از پرکننده های معدنی استفاده می‌شود. به عنوان نرم کننده ، از فتالات‌ها و معرف‌های جفت کننده سیلانی استفاده می‌شود و عامل سخت کننده آنها شامل دی اکسید منگنز و کرومات هستند.

سفت شدن لاستیکی چسب‌های ساختمانی:

بسیاری از چسب‌های ساختمانی ، پلیمرهای لاستیکی حل شده ای در خودشان دارند. وقتی که چسب‌ها سخت می‌شوند، لاستیک به صورت قطراتی با قطر حدود 1µm رسوب می‌کند. لاستیکهای استفاده شده در این روش شامل پلی وینیل فرمال (pvf) و پلی وینیل بوتیرال (PVB) هستند که هر دو بوسیله واکنش آلدئید مناسب با پلی وینیل الکل ساخته می‌شوند.

معایب و مزایای چسب‌ها

معایب

عموما چسب‌ها بوسیله آب یا بخار آب سست می‌شوند.

محدوده رهایی کار آنها کمتر از چسباننده‌های فلزی (مهره ها ،پیچ ها و بست‌های آهنی و غیره) است.

چسب‌ها توسط دمای تبدیل شیشه ای (Tg) و تخریب شیمیایی محدود شده‌اند.

مزایا

اتصال مواد غیر مشابه و لایه‌های نازک از مواد

گسترش بار بر روی یک ناحیه وسیع

زیبایی و حالت آئرودینامیک آنها بر روی سطوح خارجی اتصال

کاربرد آنها با استفاده از ماشین روبات می‌باشد.

منبع: http://aashrafi.blogfa.com/

آموزش خروج از منزل در هنگام آتش سوزی

آموزش خروج از منزل در هنگام آتش سوزی

برخلاف فیلم های سینمایی و تلویزیونی، آتش واقعی ، روشن و شفاف نیست، دود آتش غلیظ و سیاه است. نمی توان دید که پشت صحنه آتش سوزی چه چیزهایی وجود دارد یا چه اتفاق هایی در حال وقوع است و در این میان گازهای سمی موجود در دود آتش ممکن است ما را گمراه کند اما اگر خمیده راه رفتن زیر سطح دود را تمرین کرده باشید و راه خروج خود را از کنار دیوارها و شمردن درها تا خروج از خانه پیدا کنید دقیقا خواهید دانست که چه کار باید انجام دهید و با آمادگی بیشتر از یک آتش‌سوزی واقعی خارج شده و جان سالم به در می‌برید.

همه اعضای خانواده باید در مراحل تهیه نقشه فرار از آتش سوزی دخالت داشته باشند . حتی کودکان خردسال

نکاتی که در طرح فرار از خانه در هنگام بروز حادثه می‌بایست به آن توجه کرد  :

- خانه را بگردید و دو راه فرار برای هر اتاق تعیین کنید، البته با اطمینان از اینکه  هر یک از این خروجی ها در دسترس است، اگر هر اتاق دو راه دسترسی داشته باشد احتمال اینکه از آتش سوزی احتمالی در خانه خود نجات یابید افزایش می یابد.

- ببینید آیا پنجره ای وجود دارد که بسته است ولی باز نمی شود. پنجره ها حتما باید طوری باشد که بتوان آنها را باز کرده و زیر آن را کنترل نمایید آیا چیزی بیرون از پنجره وجود دارد که مانع از فرار شما شود یا در موقع خروج سبب آسیب دیدن شما شود ؟ اگر چنین است همین حالا مشکل را برطرف سازید.

- اگر پنجره های اتاق خواب شما دزدگیر دارد باید از داخل اتاق باز شود. اگر چنین نیست باید آنها را طوری تغییر دهید که از داخل باز شوند. دزدگیرها می تواند شما را در داخل اتاق خودتان محبوس کند همچنین طبق مقررات دزدگیرهای نصب شده روی پنجره اتاق خواب ها باید از داخل باز شود.

- اگر اتاق خواب های شما در طبقه دوم قرار دارد آیا پله های فرار برای هر اتاق خواب در نظر گرفته شده است؟

- مواظب باشید درها به وسیله مبلمان یا کمد مسدود نشده باشند.

- محل تجمع اعضا خانواده پس از خروج ازخانه را در محلی امن نسبت به خانه تعیین کنید.

-     اگر افراد خردسال ، پیر یا ناتوان و معلول در خانه دارید اتاق خواب آنها را در طبقه همکف قرار داده و کسی را تعیین کنید تا در مواقع اضطراری به کمک ایشان بشتابد.

-         ایست

قبل از باز کردن در اندکی تامل کنید. در را لمس کنید. درحالی که دولا دولا راه می‌روید به طرف در رفته و تا آنجا که می توانید دست خود را بالا برده و در را لمس کنید بدون اینکه بایستید، شستی در لبه ها و پائین در را لمس کنید. اگر احساس کردید گرم هستند آن در را باز نکنید و از خروجی دیگر استفاده کنید.

- اگر در ضمن خروج، بوی دود را حس کردید از خروجی دیگر استفاده کنید اگر مجبور هستید از میان دود فرار کنید دولا دولا از زیر دود خارج شوید چون در آنجا هوا تمیزتر و خنک تر است.

- اگر لباستان آتش گرفت، حرکت نکنید، خودتان را روی زمین بیاندازید و روی زمین بغلتید و صورت خود را با دستانتان بپوشانید تا شعله ها خاموش شود.

- وقتی از خانه خارج می‌شوید دیگر هرگز به هیچ دلیل به خانه‌ای که می‌سوزد برنگردید از منزل همسایه با سازمان آتش نشانی (125) تماس بگیرید.

 

تمرین کنید

با تمرین کردن فرار از آتش می توانید سریع تر و با اضطراب کم تر از خانه خارج شوید اگر مسیر فرار خود را حفظ باشید می توانید به سرعت از منزل خارج شوید و دود و گاز حاصل از آتش شما را گمراه نخواهد کرد.

با رعایت این نکات ساده، خود و اعضای خانواده خود را در برابر آتش سوزی محافظت کنید :

- گاز سنج خود را امتحان کنید حداقل ماهی یک بار باتری های کهنه را با باتری های آلکالین نو و مرغوب تعویض کنید. گازسنج شما به مدت یک سال به خوبی کار می کند. اگر در منزل گازسنج ندارید همین امروز یکی از آنها را بخرید! در هر طبقه از منزل خود حداقل یک گازسنج نصب کنید از جمله در زیرزمین و اتاق نشیمن و از همه مهمتر بیرون همه اتاق خواب‌ها ، گازسنج خود را طبق دستورالعمل سازنده آن نصب کنید. توجه داشته باشید گازسنج ممکن است تنها وسیله ای باشد که شما را به موقع هوشیار کند تا از آتش بگریزید.

- نقشه فرار از خانه را تهیه کنید تا در صورتی که آتش سوزی رخ دهد از مهلکه دور شوید. نقشه طبقات خانه را روی کاغذ رسم کرده و آن را به همه اعضای خانه تفهیم کنید. راه های خروجی را با دو خط مسیر که از درها و پنجره ها خارج می شوند مشخص کنید. محل تجمع پس از فرار از خانه را در جای امنی نسبت به خانه تعیین کنید تا همه اعضای خانواده در صورت بروز آتش سوزی در منزل بعد از نجات خود به آن مکان پناه آورند . دقت کنید که برای هر اتاق باید دو خروجی داشته باشید.

 -    نقشه فرار خود را به تمرین بگذارید . با دیگر اعضای خانواده نشسته و نقشه فرار خود را بررسی کنید پس از اینکه همه با نقشه آشنا شدند تمرین آتش سوزی را شروع کنید و از همه بخواهید روی تختخواب خود دراز بکشند و تکمه آزمون گازسنج را فشار دهید . به خاطر داشته باشید که قبل از باز کردن در باید آن را لمس کنید تا گرم نباشد ، همه دولا دولا شده و از خانه خارج شوند و در محل تجمع که از قبل تعیین شده در بیرون منزل منتظر بمانند. خطر مرگ برای کودکان در آتش سوزی منازل مضاعف است زیرا آنها اغلب در آتش سوزی می ترسند یا گیج می شوند دقت کنید که کودکان شما سیگنالهای گازسنج را درک کرده و آژیر آن را تشخیص دهند. در حالی که تمرین برای افراد بزرگسال ممکن است احمقانه جلوه کند اما کودکان از آن خوششان می آید و مزد واقعی این تمرین را در موقع قرار گرفتن در وضعیتی اضطراری خواهند گرفت.

- دزدگیرهای پنجره های اتاق خواب باید از داخل باز شوند اگر چنین نبود هر چه زودتر اقدام لازم معمول نمایید تا این پنجره‌ها با ضامن مناسب قابل عقب و جلو شدن باشند. شبکه هایی که درهای بیرونی را می پوشانند نیز باید به راحتی باز شوند برای درهای اتاق های مسکونی از ضامن های استوانه ای که دو کلید می خورند استفاده نکنید این نوع قفل ها وقتی قفل می شوند نیاز به یک کلید در داخل دارند تا باز شوند و اگر کلید را در جای آن قرار نداده باشید شاید نتوانید به سرعت آن را پیدا کنید.

 - کبریت و فندک بازیچه دست کودکان نباید باشد این موارد را از دسترس کودکان دور نگهدارید.

- در مورد برق، احتیاط را رعایت کنید وقتی یک وسیله برقی روشن را در دست دارید روی سطح آب یا سطح مرطوب پا نگذارید. از وسایل یا سیم های رابط زخمی شده استفاده نکنید و آنها را جهت تعمیر ارسال نمایید یا دور بیاندازید. اگر احتمال می دهید که سیستم برق منزل شما اشکال دارد از افراد متخصص برای برطرف کردن عیب آنها کمک بخواهید. مشکلات برق از امور تخصصی است و می‌بایستی به متخصص آن واگذار شود.

 

- یک کپسول آتش نشانی را نصب کنید روی دیوار در مسیر خروجی یا مجاور آن به صورتی که در معرض دید باشد (ما نزدیک آشپزخانه را توصیه می کنیم). همچنین طرز کار با آن را یاد بگیرید.

 - هرگز غذای در حال پختن را رها نکنید . بر روغن داغ به دقت نظارت کرده و آن را آهسته گرم کنید اگر مجبور هستید آشپزخانه را ترک کنید اجاق را خاموش کنید اگر روی اجاق ماهی‌تابه حاوی روغن آتش گرفت ، سر ماهی تابه را روی آن بگذارید تا شعله ها خفه شوند. همچنین می‌توانید از کپسول آتش نشانی برای این کار استفاده کنید یا جوش شیرین در ماهی تابه بریزید هرگز از آب ، آرد یا نمک برای خاموش کردن چربی و روغن آتش گرفته استفاده نکنید.

- بنزین را در ظروف تائید شده نگهداری کنید و هیچ وقت بیش تر از دو گالن بنزین در خانه نگهداری نکنید. ظرف بنزین باید در برابر بخار نفوذناپذیر بوده و در یک کابینت در گاراژ یا بیرون از منزل دور از هر منبع حرارتی قرار داده شود هرگز بنزین را داخل خانه نگه ندارید. همچنین، بنزین را دور از دسترس کودکان نگه دارید.

- وسایل گرم کننده علت درجه یک آتش سوزی های خانگی است . دقت کنید که مواد قابل احتراق حداقل 60 سانتیمتر از بخاری های دیواری، بخاری های مبلی ، شومینه ها و تنورها دور باشند. هر سال شومینه یا دودکش منزل و محل کار خود را بازرسی و تمیز کنید. وقتی از اتاق خارج می‌شوید بخاری های دیواری را خاموش کرده و در موقع حضور در منزل به آنها توجه داشته باشید.

فلزات سنگین و محیط زیست

در دهه گذشته ورود آلاینده ها با منشاء انسانی مانند فلزات سنگین به داخل محیط های دریایی، به مقدار زیادی افزایش یافته است که به عنوان یک خطر جدی برای حیات محیط های آبی بشمار می آیند. فلزات سنگین در یک مقیاس وسیع، از منابع طبیعی و انسان ساخت وارد محیط زیست می شوند. میزان ورود این فلزات سنگین به داخل محیط زیست، متجاوز از میزانی است که بوسیله فرایندهای طبیعی برداشت می شوند. بنابراین تجمع فلزات سنگین در محیط زیست مورد توجه می باشد. سیستم های آبی به طور طبیعی دریافت کننده نهایی این فلزات هستند. ادامه مطلب ...

منگنز

منگنز از کلمه لاتین Magnes (Magnet)گرفته شده است که به خواص مغناطیسی پیرولوزیت (کانه اصلی منگنز) اشاره می کند.

منگنز فلزی است خاکستری مایل به صورتی با وزن مخصوص 4/7 که دمای ذوب آن به 1245 درجه سانتی گراد می رسد . این عنصر در طبیعت به صورت خالص تشکیل نمی شود و بیشتر به صورت اکسید ، کربنات و سیلیکات وجود دارد. نماد این عنصر Mn بوده و با عدد اتمی 25 می باشد .

منگنز از نظر فراوانی، دوازدهمین عنصر پوسته زمین است. کلارک منگنز در طبیعت 1/0% و در سنگ های مافیک و اولترامافیک تا 5/1% می رسد.

منگنز در بسیاری از کانیهای موجود در پوسته زمین وجود دارد و علارغم این که بیش از 300 کانی حاوی منگنز شناسایی شده اند اما تعداد کانیهای منگنزدار دارای ارزش اقتصادی کمتر از 12 می باشد و شامل :

پیرولوزیت، پسیلوملان، براونیت، منگانیت و رودوکروزیت اکثراً در کانسارهای رسوبی یا تجزیه ای یافت می شوند.

منگنز به دلایل اقتصادی و داشتن خصوصیات فیزیکی- شیمیایی خاص به عنوان یکی از فلزات استراتژیک مورد استفاده در صنایع فولاد و ذوب آهن، تولید فروآلیاژ ، باتری سازی و . . . مطرح شده است.

صنعت فولاد درحدود 90 % مصرف جهانی منگنز را به خود اختصاص داده است و سنگ منگنز عمدتاً برای تولید فرومنگنز، چدن و فولاد به مصرف می رسد . علاوه بر مصارف متالورژیکی ، منگنز کاربردهای غیر متالورژیکی متعددی نیز دارد که عبارتند از دی اکسید طبیعی یا مصنوعی در باتریهای خشک و شیمیایی، سولفات و اکسی سولفات های منگنز در خوراک دام و افزودنی های کودهای گیاهی در کشاورزی، پرمنگنات ( به عنوان اکسید کننده) ، صنایع کبریت سازی ، سرامیک ، شیشه و آجر، الکترود جوشکاری ، فروسیلیکومنگنز ، تولید فریت‌ها، تصفیه آب، هیدرومتالوژی، افزودنیهای سوخت و سایر کاربردهای فرعی.

تولید فولاد و آلیاژ:

مهمترین کاربرد منگنز در صنعت، تهیه آلیاژهای آهن و به عنوان ماده اساسی برای تولید چدن و فولاد می باشد.منگنز بیشترین کاربرد را در تولید فولاد(فولادهای کربن دار،مقاوم کم آلیاژ HSLA،ضدزنگ ابزارآلات)،آلیاژهای غیرفولادی( آلیاژهای غیرآهنی،فروآلیاژهاوچدن)دارد. فولا بخصوص فولادهای کربن دار بخش اصلی بازار منگنز را به خود را اختصاص می‌دهد.

میزان مصرف جهانی منگنز موجود در فرو آلیاژها و به عنوان فلز در سال 1998 برابر 5 تن میلیون بوده است. تقاضا برای منگنز در تولید آهن و فولاد در حدود 88 درصد کل تقاضا را تشکیل می‌دهد که برابر 4/4 میلیون تن در سال است.

فولاد خام، محصول پایه ای است که انواع فولادهای کربن دار، ضد زنگ و مقاوم کم آلیاژ (HLSA) از آن تولید می‌شود. منگنز در اکثر فولادها حضور دارد. و مقدار آن معمولا در حدود 1% وزنی است. در فولادهای ضد زنگ درصد منگنز تا 2 درصد است،‌با این وجود در بعضی از انواع خاص فولادها ممکن است تا 19 درصد افزایش یابد. برآورد میزان واقعی منگنز مورد نیاز در صنعت فولاد به دلیل گستردگی انواع و متغیر بودن میزان منگنز مصرفی در هر نوع خاص فولاد مشکل است. با این وجود فولادهای کربن دار با در حدود 6/1 درصد منگنز در ترکیب خود،اصلی ترین نوع فولاد و بزرگترین بازار منگنز هستند.

در حدود 95 – 90% از تولید جهانی ماده معدنی منگنز در صنایع متالوژیکی تولید فولادی معمولی، ریخته گری ها و ساخت فرو آلیاژهای مختلف به کار می رود و عرضه و تقاضای این فلز نیز به عرضه و تقاضای فولاد و فروآلیاژ بستگی زیادی دارد.

اگر چه منگنز ارزان ترین فلز مورد استفاده در ساخت فروآلیاژها ماسیوسولفید می باشد، دلایل مهمتری نیز در کاربردهای وسیع آن در صنایع وابسته به آهن و فولاد وجود دارد. در سال 1856 میلادی توسعه فرآیند فولاد سازی بسمر سبب رونق اقتصادی منگنز گردید، بعدها رابرت هادفیلد موفق به کشف مزایای فولادهای با محتوای منگنزی بالا شد و امروزه نوعی فولاد با محتوای منگنز بالا فولاد هادفیلد شهرت دارد.

مقدار منگنز در فولاد به طور میانگین 7/0 % ( و در بسیاری از انواع فولادها 5%) می باشد ولیکن انواع فولاد منگنزی که در حدود 14 – 10% منگنز دارند، به فولادهای هادفیلد Hadfield steels معروفند. این گونه فولاد ها به مقدار ناچیزی تولید می شوند.

امروزه منگنز به صورت کانسنگ و یا به صورت فروآلیاژهای مختلف در فولاد سازی به کار می رود که در این زمینه نقش های عمده منگنز عبارت خواهد بود از:

1-احیا کننده و تمیز کننده در فولاد مذاب

1.به منظور حذف گوگرد که با ترکیب شدن با گوگرد و بهبود خواص فولاد مورد نظرو کنترل ساختار سولفیدهای موجود در فولاد (گوگرد زدایی)همراه است . در واقع گوگرد و عناصر مزاحم را به خود جذب نموده و آنها را وارد سرباره می کند .

ایفای نقش به عنوان یکی از اجزای آلیاژی برای افزایش مقاومت، افزایش سختی و کاهش شکنندگی ورفتار حرارتی فولادها.

فروآلیاژهای منگنز برای جدا کردن گوگرد و اکسیژن زائد در کوره فولاد سازی به کار می روند زیرا غلظت زیاد گوگرد در فولاد، همگنی آن را کاهش داده، باعث سهولت شکست آن می گردد. لذا منگنز با گوگرد ترکیب می شود تا سولفید منگنز موجود در سرباره را تشکیل دهد.

در صنعت فولاد، منگنز در اشکال مختلف کانسنگ و فروآلیاژهای فرو منگنز، اسپیگل ایزن-سیلیکو منگنز و سیلیکو اسپیگل- ایزن استفاده می شود.

کانسنگ های منگنز مورد استفاده دارای عیار منگنز 55-38% می باشند، گرچه در مواردی سنگ های با عیار 30% نیز به کار می روند. از آنجا که عیار منگنز 48% برای تولید فرومنگنز مورد نیاز می باشند. این عیار به عنوان مبنای قیمت گذاری کانسنگ های منگنز فرض شده است.

این کانسنگ دارای ترکیب شیمیایی زیر می باشد و به کانسنگ متالوژیکی منگنز معروفند.

Cu+pb+2n<0/3% ، p<0/19% ، As<0/18% ، Al2 O3 + Sio2 <11% ،

Al2o3 <7% , Fe<4%

منگنزاساساً برای کنترل ناخالصی های اکسیژن و سولفور در تولید فولاد به کار می رود و باعث افزایش پایداری، سختی و استحکام فولاد می شود.

منگنز در پوشش های مقاوم مانند ریل های راه آهن و تجهیزات معدنی استفاده می شود. این فلز یک سازنده مهم در ترکیب آلیاژهای غیر آهنی به ویژه آلیاژ آلومینیوم می باشد.

آلیاژهای مسی با افزوده شدن مقدار ناچیزی Mn پایدارتر می شوند که در این صورت برنزهای منگنز نام دارند و همچنین در آلیاژهای مس برای اکسیدزایی نیز از منگنز استفاده می شود.

آلیاژهای مس، منگنز و نیکل به عنوان آلیاژهای مقاوم الکتریکی به کار می روند و 10 % منگنز دارند و برخی آلیاژها با منگنز بیشتر، دارای ضریب انبساط گرمایی بالایی هستند که در ساختمان ترموستات به کار می روند. انواع مختلف منگنز برای ساخت پوشش های میله جوشکاری مصرف می شوند.

در تولید آهن خام، منگنز به شکل سنگ خام و یا کلوخه ( سینترشده ) به کوره وارد می‌شود. در تولید فولاد، منگنز به شکل کانسنگ، کنسانتره، فرو آلیاژ و یا فلز خالص در خلال و یا در مرحله نهایی فرایند تولید مورد استفاده قرار می‌گیرد.

افزودن منگنز در فرایند تولید آهن خام تا حد یک درصد، علاوه بر بهبود خواص فیزیکی آهن خام به دلیل حذف گوگرد، باعث افزایش راندمان در مرحله بعدی تولید فولاد، کاهش مصرف کمک ذوب‌ها و افزایش عمر مصالح نسوز کوره می‌شود. نقش منگنز در زودودن گوگرد به این صورت است که ترکیب منگنز و گوگرد موجود در سنگ آهن تولید سولفید منگنز می‌کند که به راحتی توسط سرباره از کوره خارج شود. بعلاوه سولفید منگنز ـ آهن که در ترکیب آهن باقی می‌ماند به مراتب اثرات مضر کمتری از سولفید آهن دارد. نحوه و تا حدودی میزان افزودن منگنز بستگی به فناوری استفاده شده در تولید آهن و فولاد دارد. یکی از روشهای معمول افزودن مستقیم سنگ آهن منگنزدار، سنگ منگنز کم عیار آهن دار و یا سرباره‌های منگنزدار برگشتی به کوره بلند است.

میزان مصرف منگنز در فرایند فولاد تولید آهن خام وفولاد، بستگی به موارد زیر دارد :

ـ میزان فسفر موجود در آهن خام

ـ میزان گوگرد و درصد منگنز موجود در سنگ آهن ?

ـ‌راندمان فرآیند گوگرد زدایی

ـ عیار منگنز در کانسنگ منگنز

ـ مقدار منگنز در سرباره ??

خواص فیزیکی الکلها

خواص فیزیکی الکلها

دمای جوش

در میان هیدروکربنها ، به نظر می‌رسد که عوامل تعیین کننده دمای جوش ، عمدتا وزن مولکولی و شکل مولکول باشند. در الکلها ، با افزایش تعداد کربن ، دمای جوش بالا می‌رود و با شاخه‌دار کردن زنجیر ، دمای جوش پایین می‌آید، اما نکته غیر عادی در مورد الکلها این است که آنها در دمای بالا به جوش می‌آیند. این دمای جوش بسیار بالاتر از دمای جوش هیدروکربنها با وزن مولکولی یکسان است و حتی از دمای جوش بسیاری ترکیبها با قطعیت قابل ملاحظه بالاتر است.

دمای جوش بالای آنها ، به علت نیاز به انرژی بیشتر برای شکستن پیوندهای هیدروژنی است که مولکولها را در کنار هم نگه داشته‌اند.

حل شدن الکلها

رفتار الکلها بعنوان حل شده نیز توانایی آنها برای تشکیل پیوندهای هیدروژنی را منعکس می‌کند. برخلاف هیدروکربنها ، الکلهای سبک با آب امتزاج‌پذیرند. از آنجا که نیروهای بین مولکولی الکلها همانند نیروهای بین مولکولی آب است، دو نوع مولکول با یکدیگر قابل اختلاط هستند. انرژی لازم برای شکستن یک پیوند هیدروژنی بین دو مولکول آب یا دو مولکول الکل ، با تشکیل یک پیوند هیدروژنی بین یک مولکول آب و یک مولکول الکل تامین می‌شود.

ذوب:

تقریباً تمام جامدات و مایعات با بالا رفتن دما منبسط می شوند. بر اساس تئوری جنبشی، وقتی دمای جامد را بالا می بریم، سرعت ذره های ان افزایش می یابد و ذره ها با یکدیگر بیشتر برخورد می کنند و این برخورد با نیروی بیشتری صورت می گیرد. به این ترتیب، ذره ها از یکدیگر دورتر می شوند و اگر دمای جامد را به اندازه کافی بالا ببریم، ذره ها به اندازه کافی از یکدیگر فاصله می گیرند به طوری که بعضی از آنها از کنار یکدیگر می گذرند و آرایش منظم حالت جامد فرو می ریزد. وقتی چنین تغییری صورت می گیرد می گوییم جامد ذوب شده است.

در مخلوطی از حالتهای جامد و مایع در یک ظرف سربسته، بین مولکولهای جامد و مایع، تعادل دینامیک وجود دارد. هر حالت همچنین با بخار خود در تعادل است. از آنجا که فقط یک نوع بخار وجود دارد، جامد و مایع فشار بخار یکسان دارند. درواقع ، دمای ذوب دمایی است که فشار بخار جامد و فشار بخار مایع برابرند.

دمای ذوب یک ماده به نیروهای بین مولکولی در ان ماده بستگی دارد. دمای ذوب موادی که نیروهای بین مولکولی ضعیف دارند، پایینتر از دمای ذوب موادی است که نیروی بین مولکولی قوی دارند. پس مواد غیرقطبی با جرمهای مولی کم نسبت به مواد قطبی با جرمهای مولی مشابه دمای ذوب پایین تری دارند.

اما فشار بخار بعضی جامدات در دمای اتاق زیاد است به طوری که اگر در ظرف سربسته ای نگهداری نشوند، به سرعت تبخیر می شوند. چنین موادی بدون اینکه مایع شوند به طور مستقیم از جامد به گاز تبدیل می شوند. این فرآیند را تصعید می گویند.

فشار بخار نفتالین نیز در دمای اتاق به اندازه کافی بالا است طوریکه در دمای اتاق تصعید می شود.

نفتالن یا نفتالین یک ماده بلوری بی رنگ با نقطه ی ذوب 80 درجه سانتیگراد می باشد. نفتالن را در قدیم به عنوان دفع کننده بید و حشره کش به کار می بردند.

نفتالین دارای فرمول C10H8 و ساختار بنزنی می باشد. یعنی دو تا حلقه ی شش گوشه ای بنزنی است که به یکدیگر متصل شده اند و زوایای پیوندی در حلقه ها برابر 120 درجه می باشد. بنابراین نفتالین جزء ترکیبات آروماتیک (معطر) می باشد.

نفتالین از بین جامدات بلوری مختلف در خانواده ی جامدات مولکولی طبقه بندی می شود. ذرات تشکیل دهنده آن مولکولهای ناقطبی و نیروهای بین مولکولی واندروالسی در آن از نوع نیروهای ضعیف دو قطبی لحظه ای می باشد. درنتیجه این ماده دارای نقطه ذوب نسبتاً پایین و نارسانا می باشد.

نفتالین از قطران زغال سنگ بدست می آید اما می توان به روشهای شیمیایی آن را سنتز (درست) کرد.

منشا نفت و گاز

منشا نفت و گاز

بشر از قرنها پیش به وجود نفت پی برده بود و این ماده روغنی شکل و اعجاب‌آمیز از دیر باز مورد استفاده پیشینیان بوده است. نفت را OIL یا Petroleum (روغن سنگ) می‌نامند. در زبان اوستایی نپتا به معنی روغن معدنی است که کلدانیها و عربها آن را از فارسی گرفته و نفت خوانده‌اند. هم‌اکنون بیش از دوسوم انرژی مصرفی جهان از نفت تامین می‌شود. نظریات متعددی راجع به منشاء نفت و گاز ابراز شده است که اولین فرضیه ها برای تشکیل هیدروکربنها با منشاء غیر آلی نظیر منشاء آتشفشانی، شیمیائی و فضائی ارائه گردیده است. لکن امروزه در خصوص منشاء آلی هیدروکربها اتفاق نظر وجود دارد. این مواد آلی می تواند بقایای گیاهان و حیوانات خشکی و دریائی عمدتا" پلانکتونها باشد.به طور دقیق تر در دریا و اقیانوس دو دسته تولیدکننده اصلی ماده آلی مناسب برای تبدیل به نفت داریم: فیتوپلانکتونها( دیاتومه ,داینوفلاژله, جلبک سبزآبی) زئوپلانکتونها وجانوران عالیتر تغذیه کننده از فیتوپلانکتونها برای اینکه تولید مواد آلی در محیط آبی به میزان مناسبی باشد,دو عامل دخیلند:1.ضخامت زون نور دار 2.میزان ورود مواد مغذی به زون نوردار( مواد مغذی که برای رشد گیاهان و جانوران مفیدند همانا فسفاتها ونیتراتها و اکسیژن هستند.) بنابه این توضیحات بیشترین تولید مواد آلی در دو ناحیه عمده در حواشی قاره هاست که عبارتند از آبهای کم عمق فلات قاره و زونهای چسبیده به محیطهای قاره ای که جریان روبه بالای آبهای سرد و عمیق اقیانوسی را پذیرا می شوند. در چنین محیطهایی که تولید مواد آلی زیاد است,با رخدادن طوفان ومخلوط شدن آبهای بی اکسیژن واکسیژندار , ویا ازدیاد تولید جانداران وکم شدن اکسیژن , گروهی از جانداران دچار مرگ و میر گروهی میشوندو در کف محیط رویهم انباشته میشوند. اهمیت پلانکتونها در تشکیل نفت از آنجا ناشی می شود که آب دریا ناحیه مساعدی جهت تکثیر پلانکتونها می باشد و تعداد آنها نیز در آب دریا بسیار زیاد می باشد. پلانکتونها به علت سرعت رشد و کوچکی جثه، ماده آلی مناسبی است که به سهولت به وسیله رسوبات ریز دانه مدفون گشته و مصون از اکسید شدن در رسوبات باقیمانده و هیدروکربن را تولید می نماید. طبق نظریات جدید مواد مختلف آلی ته نشین شده با رسوبات نرم هنگام دیاژنز (سنگ شدن) تبدیل به یک ماده واسط بین ماده آلی و هیدروکربن می گردد. این ماده واسط کروژن (Kerogn) نامیده می شود. کروژن یک ماده جامد نامحلول آلی است که محصول دیاژنتیک مواد آلی است. توان تولیدی کروژنها برای تولید نفت و گاز متفاوت است.

نفت تشکیل یافته به علت مایع بودن و همچنین به علت خاصیت موئینگی محیط خود از خلال سنگها گذشته، زیر یک طبقه غیر قابل نفوذ در بالاترین قسمت یک چین‌خوردگی که تاقدیس نامیده می‌شود، ذخیره می‌گردد.

بررسی عوامل مشترک مخازن نفت و گاز نشان می دهد که:

الف- شرایط و محیط رسوبی خاصی لازم است تا طبقات نفت زا (سنگ مادرSource Rock) تشکیل شود و همچنین شرایط خاصی باید وجود داشته باشد تا مواد آلی رسوب یافته در این لایه ها به هیدروکربن تبدیل گردد.
ب- سنگ متخلخل و نفوذپذیری (سنگ مخزن Reservoir rock ) باید وجود داشته باشد تا فضای لازم جهت انبار شدن نفت فراهم آید.
ج- سنگ مخزن می بایستی شکل خاصی داشته باشد تا بتواند تله (Trap) را تشکیل داده باعث جمع شدن هیدروکربن گردد.
د- سنگ غیر قابل نفوذی (سنگ پوشش Cap Rock ) لازم است که مخزن را بپوشاند تا از خروج نفت و گاز از مخزن جلوگیری نماید.

تبدیل مواد الی به کروژن و گاز

در باره نحوه تبدیل مواد آلی رسوبات به نفت و گاز با مطالعات جدید ژئوشیمیائی و جمع آوری اطلاعات تجربی ثابت شده است که قسمت اعظم هیدروکربنهای طبیعی در اثر کراکینگ کروژن ناشی از حرارت زمین (ژئوترمال) تولید می گردد. همانطور که بیان گردید برای بوجود آمدن نفت و گاز وجود مواد آلی فراوان و تشکیل کروژن در هنگام دیاژنز رسوبات ضروری می باشد. پس سنگ مادر (Source Rock) سنگی است که دارای مقدار کافی کروژن باشد. شرایط مساعد رسوبی برای تجمع و ذخیره شدن مواد آلی شامل گیاهان و جانوران دریائی و همچنین مواد آلی خشکی که توسط رودخانه ها به حوزه رسوبی حمل می گردد، رسوبات رسی و یا گل کربناته (ریزدانه بودن و محیط آرام رسوب گذاری) می باشد. علاوه بر این محیط کف دریا بایستی محیط احیاء کننده باشد تا از اکسیدشدن مواد آلی جلوگیری بعمل آید.

طبیعی است هرچه میزان کروژن در سنگ مادر بیشتر باشد توانائی بیشتری برای تولید هیدروکربن وجود دارد لکن علاوه بر درصد مواد آلی، سنگ مادر بایستی ضخامت کافی نیز داشته باشد. براساس مطالعات ژئوشیمیائی انجام شده برای اینکه سنگ مادری بتواند هیدروکربن تولید نماید باید دارای حداقل تراکمی از کربن آلی باشد که از آن کمتر قادر به تولید هیدروکربن نخواهد بود. این حداقل عمدتا" 5/0 درصد کربن آلی برآورد می شود. سنگ مادرهائی که در حوزه های رسوبی ایران دیده می شود نظیر سازند کژدمی در ناحیه زاگرس حدود 10-5 درصد کربن آلی دارد که بیشتر از جلبکها منشاء گرفته است.

هیدروکربنها در اثر کراکینگ کروژن بوجود می آیند. کراکینگ کروژن عمدتا" در درجه حرارتهای 100-80 درجه سانتیگراد شروع می شود. این درجه حرارت در یک ناحیه رسوبی با درجه حرارت ژئوترمال طبیعی معادل عمقی بین 3000-2000 متر می باشد. بنابراین یک سنگ مادر هرچه قدر هم ضخیم و غنی از مواد آلی باشد تا در اعماق فوق قرار نگیرد نمی تواند هیدروکربن تولید نماید. بر همین اساس ابتدا نفت خام سنگین تولید می گردد. چگالی و وزن مخصوص نفت خام با ازدیاد عمق کاهش می یابد. هرچه قدر سنگ مادر عمیقتر مدفون گردد نفت تولید شده سبکتر است و گاز معمولا" محصول آخرین این فعل و انفعالات است.

بنابراین ابتدای نفت های بسیار سنگین، نفتهای پارافینیک، نفتهای سبک، نفتهای میعانی و نهایتا" گاز بدست می آید. وقتی درجه حرارت از 165 درجه سانتیگراد تجاوز کند فقط گاز تولید خواهد شد یعنی تقریبا" از عمق 5000 متر بیشتر (ضخامت رسوبی) احتمال یافتن نفت بسیار کم می شود و فقط می توان انتظار یافتن گاز را داشت. در درجه حرارتهای بالاتر از 230 درجه سانتیگراد کروژن یک بافت گرافیتی ثابت پیدا می کند که با ازدیاد درجه حرارت هیدروکربنی تشکیل نمی شود (نسبت هیدروژن به کربن تغییر نمی یابد). به طور کلی ازدیاد عمق باعث ازدیاد درجه حرارت می گردد که این ازدیاد درجه حرارت دو اثر دارد:

الف- کراکینگ کروژن و تبدیل مولکولهای بزرگ به مولکولهای کوچکتر مانند تشکیل نفت و گاز
ب- پلیمریزاسیون مولکولها که به تشکیل متان و گرافیت ختم می گردد (کروژنهای گرافیتی)

نکته مهم دیگری که در مورد تشکیل هیدروکربنها وجود دارد زمان زمین شناسی می باشد. به عبارت دیگر رسوبات قدیمی تر (از نظر زمین شناسی) در درجه حرارتهای پائین تر، همان محصولی را می دهد که سنگ مادری با سن زمین شناسی کمتر در درجه حرارتهای بالاتر هیدروکربن تولید خواهد نمود

گاز

به علت فشار زیاد درون حفره نفتی، مقدار زیادی از گاز در نفت خام حل شده است. به همین دلیل نفت خامی را که از چاه بیرون می‌آید، قبل از انتقال دادن به پالایشگاه، ابتدا به دستگاه تفکیک مخصوصی می‌برند تا قسمت اعظم گازهای سبک و آب نمک آنرا جدا سازند. گازی که مستقیماْْ از چاههای نفت خارج می‌شود با گازی که به این وسیله از نفت خام تفکیک می‌گردد، پس از تصفیه به صورت گاز طبیعی به وسیله‌ی شبکه‌ی گازرسانی برای مصارف سوخت و صنایع پتروشیمی توزیع می‌شود. گاز طبیعی مخلوطی از ئیدروکربنهای سیرشده سبک مانند متان، اتان و اندکی پروپان و بوتان است. قسمت عمده این گاز متان و مقدار کمتری اتان می‌باشد.در این گازها غالباْْ آثاری از نیتروژن، کربن دی اکسید و گاهی ئیدروژن سولفید و هلیم وجود دارد. پس از استخراج نفت آن را پالایش می‌کنند.

پالایش نفت

پالایش نفت مجموعه عملیاتی است که به وسیله آنها بسیاری از مواد گوناگون از جمله بنزین، نفت سفید، نفت گاز یا گازوئیل، نفت کوره، گریس، قیر و غیره از نفت خام بدست می‌آید. عملیات اساسی پالایش نفت را به سه دسته کلی تقسیم می‌کنند: الف- جدا کردن مواد ( با استفاده از تقطیر جزء به جزء) ب- تبدیل ( تبدیل اجزاء نامرغوب و کم‌مصرف به اجزاء مرغوب در پالایشگاه) ج- تصفیه فرآورده‌های نفتی بیش از نیم قرن از مصرف فرآورده‌های نفتی به صورتی غیر از سوخت می‌گذرد. به مرور زمان و با پیشرفت علم و تکنولوژی، انسان تعداد روزافزونی از ئیدروکربنها را به طور خالص از سایر فرآورده‌های نفتی جدا کرده و به مصرف تولید سایر مواد شیمیایی و صنعتی رسانیده است. صنایع وابسته به نفت را که از مواد نفتی محصولات غیرنفتی تهیه می‌کنند را صنایع پتروشیمی می‌نامند. مواد اولیه‌ حاصل از صنعت نفت که برای تهیه سایر فرآورده‌های شیمیایی به کار می‌رود، مواد پتروشیمی نامیده می‌شود.

باغ شیمیایی

در محلولی از سدیم سیلیکات،چند بلور مس سولفات بپاشید تا شاهد رشد درهم برهم ودرخت مانند لوله های گره دار مس سیلیکات راسب باشید .سالهاست این آزمایش که به نام" باغ شیمیایی" شناخته می شود در نمایشهای آموزشی و کیتهای شیمیایی برای نوجوانان مطرح بوده است . با این حال ،جزئیات فرآیند رشد بلور آن تا کنون در پرده ابهام بود . به تازگی الیور اشتاین بک وهمکارانش در دانشگاه ایا لتی فلوریدا ،نمونه کنترل شده علمی این آزمایش را تهیه کرده اند وقوانین حاکم بر رشد لوله های بلور را به دست آورده اند . این پژوهشگران با وارد کردن یک لوله مویین شیشه ای از زیر ظرف ازمایش خود ،توانسته اند محلول مس سولفات را تحت جریانی کنترل شده به ظرف آزمایش وارد کنند . آنها دریافته اند که شاخصه های رشد لوله های بلور را غلظت نمک مس تعیین می کند . در غلظت کم لوله های نازک و صاف رشد می کنند ، در غلظت متوسط (1/0تا mol 35/0) حبابهایی از محلول نمک که درلایه کلوبیدی نازکی محبوس اند از نوک لوله های در حال رشد جدا می شوند وتا سطح محلول بالا می روند . در غلظتهای بالاتر ،این حبابها می ترکند ومنشأ حبابهی جدیدتر می شوند ، که خود به الگوهای رشد نا منظم منجر می شود . بررسی فیزیکی این واکنش نوسانی در غلظتهای میانه نشان داده است که دینامیک آن شبیه شیر آبچکان است . در غلظتهای کم رشد بلورها لایه ای است ومی توان آن را طوری هدایت کرد که ابتدای یک لوله بر انتهای لوله دیگر قرار گیرد . به عقیده این پژوهشگران تلاش در جهت درک بهتر نحوه رشد لوله های بلوری ،به دانشمندان کمک خواهد کرد تا بتوانندریز لوله هایی بسازند که کاربردهای فراوانی از جمله قطعه های موسوم به "آزمایشگاهی روی یک ترشه" داشته باشد . منبع: مجله شیمی