شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

شیمی - بازرسی فنی

وبلاگ هر هفته یک حدیث به آدرس www.hadis89.blogsky.com منتظر مشتاقان احادیث پیامبر و ائمه معصومین (ع) می باشد.

استفاده از MEORدر ازدیاد برداشت از مخازن نفت :

استفاده از MEORدر ازدیاد برداشت از مخازن نفت :در طبیعت چاههای نفتی وجود دارد که به علت تزریق آب دیگر قادر به تولید نفت نیستند و یا به اصطلاح غرقاب شده اند و همچنین چاههایی وجود دارند که به دلیل رسوب تر کیبات آلی و معدنی مسدود شده اند لذا بعد از استخراج اولیه و ثانویه نفت , قسمت اعظم آن حدود 80% در چاهها باقی می ماند لذا روشهای مختلفی به منظور استخراج مابقی نفت به وجود آمده است که عبارتند از :
1 – تزریق فرم و آلیاژهای پلیمری . 2 – روش حرارتی . 3 – تزریق آب .
4 – تزریق گاز 5 – استفاده از مواد شیمیایی کاهش دهنده نیروی کشش سطحی 6 – روش
MEOR

روش
MEOR :

روشی است که در آن بوسیله میکروبهای مخصوص و مشخص میزان نفت استخراجی از چاهها را افزایش می دهند.
میکروبها به سه طریق می توانند باعث ازدیاد برداشت از مخازن نفتی شوند.
1- با اکسیداسیون نفت اسید چربی تولید می کنند که باعث کاهش گرانروی نفت میگردد.
2- با تولید مقادیر نسبی از گاز
CO2 , باعث افزایش فشار در مخزن میگردند از این رو مانند تزریق گاز عمل می کنند.
3- میکروبها با بوجود آوردن بیومس میان سنگ و نفت مخزن باعث جابجایی فیزیکی نفت می شوند .
شرایط فیزیکی نفت مثل دما , فشار, نمک و .....عامل محدود کننده استفاده از
MEOR است . از آنجا که شرایط فیزیکی چاههای نفت با هم فرق می کنند نمی توان برای همه آنها از یک نوع میکروارگانیسم استفاده کرد. مثلا در چاههای کم عمق کار به روش MEOR به دلیل دمیی کمتر نسبت به چاههای عمیق که دمای بالا دارند بیشتر است.در چاههای عمیق مثل کشور ما باید از میکروارگانیسم های گرمادوست استفاده گردد. روش MEOR بطور چشمگیری محدود به دمای حداکثر 80 درجه است.
خصوصیات باکتریهای مورد استفاده در روش
MEOR :
1- کوچک باشد 2- قادر به تحمل شرایط محیطی چاه باشد 3- رشد سزیعی داشته باشد و از تحرک لازم داخل چاه برخوردار باشد 4- بتوانند مواد ضد میکروبی و ضد خوردگی را تحمل کنند 5- بری رشد به مواد مغذی پیچیده ای نیاز نداشته باشند.
انواع باکتریهای مورد استفاده در
MEOR:
سودوموناس, میکروکوکوس, کلستریدیوم, انتروباکتریاسه, اشرشیاکلی, مایکوباکتریوم, لوکونوستوک, باسیلوس لینکنی فرمیس.
آلودگی نفتی یکی از خطرات جدی تهدید کننده محیط زیست و موجودات زنده است حل این معظل زیست محیطی به طرق گوناگون از دیرباز مورد توجه پژوهندگان علوم زیستی بوده است. یکی از روشهای جدید برای رفع این آلودگی ها استفاده از باکتریهای نفت خوار است که در کشور ما نیز این باکتریها توسط دکتر غلامحسین ابراهیمی پور جداسازی شده اند. طبق گفته ایشان این باکتریها قادرند مواد ترکیبات نفتی را تا 100% به بیومس میکروبی و گازکربنیک تبدیل کنند. در صورتیکه بهترین سویه های جدا شده در آلمان تنها 80% قادرند این کار را انجام دهند. یکی از عمده ترین آلاینده های آب دریا کشتی های نفت کش هستند. این کشتی ها معمولا پس از تخلیه محموله نفتی خود در بنادر مقصد, مخزن خود را تا حدی با آب دریا پر می کنند. بارگیری این آب که معمولا آب توازن نامیده می شود برای حفظ تعادل کشتی در مسیر بازگشت به بنادر مبدا ضروری است. نکته مهم اینجاست که این نفت کش ها پس از رسیدن به بنادر در مبدا قبل از بارگیری دوباره نفت, آب توازن خود را در دریا تخلیه می کنند که همین امر موجب می شود تا مقادیر بسیار زیادی نفت خام نیزوارد آب دریا می شود. در صورتیکه اگر باکتریهای نفت خواربه آب توازن نفت کش ها اضافه شوند, قبل از تخلیه آب توازن نفت موجود در آن به بیومس میکروبی تبدیل شده و به این ترتیب نه تنها دریا را آلوده نمی کند بلکه بیومس میکروبی آن مورد تغذیه آبزیان نیز قرار می گیرد. بنابر این اگر باکتریهای نفت خوار را در سطح وسیعی تولید کنیم علاوه بر پاکسازی آبهای ساحلی خود می توانیم با فروش به سایر کشورها درآمد ارزی بالایی بدست آوریم. 

مرجع

ایمنی

سر مقاله

مسئله ایمنی ، مسئله ای است که امروز توجه بسیاری از مسئولان و مدیران را در سطوح خرد و کلان جامعه به خود جلب کرده و اقدامات موثری نیز دراین زمینه انجام گرفته است . ولی متاسفانه برغم این توجهات و سرمایه گذاریها ، همه ساله در تمام جهان شاهد حوادث و سوانحی هستیم که موجب مرگ هزاران انسان بی گناه و مجروح و معلول شدن میلیونها انسان دیگر میشود و خسارات جبران ناپذیری به تاسیسات و دستگاه و محیط زیست وارد میکند . افسوس و صد افسوس که گذشته نشان داده که همنوعان سازمانی وقتی بفکر افتاده اند که دیگر برای آنها دیر شده است . ولی ما میتوانیم و قادریم و باید قادر باشیم که گذشته دردناک را دنبال نکینم بلکه باید از تجربیاتی که متاسفانه از درد و رنج نسل های گذشته ناشی شده و برای ما به ارث گذاشته شده استفاده کرده و به آنها ارج گذاریم و سعی کنیم ما نیز از راهی که آنها تجربه آموخته اند ، تجربه اندوزی نکنیم. بیاد بیاوریم که ما نه تنها باید از گذشته عبرت گرفته و راه سلامت را طی کنیم بلکه  رسالت داریم که برای نسل آینده آموخته ای ارزنده بیادگار بگذاریم . کوشش کنیم که عمر طبیعی خود و دیگران را با اعمال نا ایمن خود کوتاه نکنیم . واقعا" چه پر مغز گرفته اند که "مهارت ثمره سالها تجریه است و زمین گیر شدن نتیجه لحظه ای غفلت"

ادامه مطلب ...

فن‌آوران ایرانی لامپ کم مصرف نانویی با قابلیت ضد عفونی محیط ساخت

 

 
متخصصان یک شرکت ایرانی موفق به تولید لامپ کم مصرفی با قابلیت پاکسازی محیط از دود، گردو غبار، میکروب، قارچ و باکتری با انتشار نانوذرات نقره شدند.
 
هانی طلوع تهرانی، از مسوولان شرکت تولید کننده این محصول در حاشیه نمایشگاه توانمندی‌های ملی فن‌آوری نانو  گفت: طرح تولید این لامپ‌ها در کشور در مرحله نهایی تحقیقات است و طی چهار، پنج ماه آینده تولید انبوه آنها آغاز می‌شود.
 
وی با اشاره به وجود نمونه های خارجی این لامپها، بیان کرد: لامپ‌های کم مصرف ساخته شده با این فن‌آوری از طریق فرایندهای نانو به ضد عفونی کردن محیط از میکروب‌ها، قارچ‌ها و باکتریها و پاکسازی هوای محیط از آلاینده های زیست محیطی از قبیل دود و گازهای مضر پرداخته و باعث کاهش افسردگی تنشهای عصبی و فشارهای روحی ــ روانی و ایجاد شادابی در افراد می‌شوند.
 
وی خاطر نشان کرد: این لامپها که تا هشت هزار ساعت عمر مفید دارند با انتشار یون‌های منفی با استفاده از پراب یون ساز و ذرات نانو نقره در محیط حتی در مواقعی که لامپ سوخته و پراب آن عمل می‌کند،‌ فضای محیط را ضد عفونی می‌کنند.

ظرفیت گرمایی ماده در حالت های فیزیکی مختلف

ظرفیت گرمایی ماده در حالت های فیزیکی مختلف

ذرات سازنده ی ماده حرکت های متفاوتی از قبیل حرکت ارتعاشی ، چرخشی و انتقالی دارند. انرژی جنبشی هر ذره ماده از این حرکت ها شکل می گیرد. بسته به حالت فیزیکی ماده ممکن است ذرات ماده یک ، دو و یا هرسه نوع حرکت را داشته باشند.

                       

نکته :

به طور کلی هرچه تعداد راه هایی که ذرات یک ماده بتوانند انرژی بگیرند بیشتر باشد، ظرفیت گرمایی ویژه ی آن ماده نیز بیشتر است.

به عنوان مثال ظرفیت گرمایی ویژه ی آب در حالت مایع نسبت به حالت های جامد و بخارآن بیشتر است. مولکول های آب در حالت جامد فقط حرکت ارتعاشی و نیروی جاذبه بین مولکولی دارند، اما در حالت مایع هر سه نوع حرکت را داشته و درضمن بین مولکول ها نیروی جاذبه وجود دارد، و درحالت گاز نیروی جاذبه بین مولکولی از بین رفته و مولکول ها تنها هرسه نوع حرکت را دارند.

 البته باید توجه داشت که در حالت گاز انرژی جنبشی مولکول های بخارآب زیادتر شده است. لذا در حالت مایع راه های کسب انرژی بیشتر است(از چهارطریق ممکن) و ضمن اینکه در حالت بخار نیروی جاذبه ی بین مولکولی وجود ندارد.

 در نتیجه اینکه در حالت مایع مولکول ها از چهار طریق ممکن ، درحالت بخار از سه طریق و در حالت جامد از دو طریق انرژی کسب می کنند.

نکته: همواره ظرفیت گرمایی ویژه ی یک مایع به طور قابل توجهی از بخار همان ماده بیشتر است.

فرایند مرکاپتان زدایی از برش های نفتی

خلاصه مقاله:

وجود ترکیبات گوگردی و مرکاپتانها در برشهای نفتی موجب آلودگی محیط زیست و در خطوط انتقال و مخازن نگهداری، باعث خوردگی می شود. بنابراین لازم است تا مقدار گوگرد و مرکاپتانها در برشهای نفتی تا حد استانداردهای بین المللی، کاهش یابد. بدین منظور فرآیند DMD جهت مرکاپتان زدایی بسط یافته است که با این روش امکان مرکاپتان زدایی از برشهای مختلف نفتی و حتی نفت خام به عنوان خوراک ورودی مسیر می باشد در این مقاله، نتایج مطالعات تجربی بر روی مرکاپتان زدایی خوراکها مختلف نفتی با استفاده از فرآیند DMD ارائه گردیده و با بررسی عوامل موثر در این فرایند، شرایط بهینه برای انجام واکنش تعیین شده است. نتایج این تحقیق نشان می دهد که این فرایند قابلیت بالایی جهت کاهش میزان مرکاپتان و ترکیبات گوگردی از برشهای نفتی دارد و کاهش مرکاپتان تا میزان استانداردهای زیست محیطی امکان پذیر می باشد. 

 لطفا به این لینک وارد شوید

انواع لکه‌ برها

انواع لکه‌ برها

لکه‌برها یا لکه‌زداها (Stain removers) حلالهای قوی هستند که لکه‌ها را در خود حل می‌کنند و از این طریق باعث پاک شدن آنها می‌شوند. اکثر این حلال ها سمی هستند و باید هنگام کار با آنها مراقب بود. بسیاری از لکه‌برها ، موادی هستند که در خانه وجود دارند و از آنها به عنوان مواد ضدعفونی کننده و پاک کننده استفاده می شود. مانند آب ژاول ، آمونیاک ، آب ، صابون ، الکل ، آب اکسیژنه و.... برخی هم مثل پربورات و اسید اگزالیک در منزل یافت نمی‌شوند، ولی خوب است تهیه شوند.

1) آب و صابون

آب و صابون بسیاری از لکه‌های تازه را از بین می‌برند و بسیاری از لکه‌ها را نیز کم رنگ کرده و بعد راحت‌تر پاک می‌شوند. برای لکه‌های مثل لکه تخم مرغ ، لکه خردل ، لکه خون تازه ، شیر و شیرینی ابتدا باید آنها را با آب و صابون شسته و سپس از لکه‌برهای معرفی شده دیگر استفاده کرد. بهتر است از آب و صابون برای لکه‌های میوه استفاده نکنید. چون ممکن است لکه را مقاوم‌تر کند.

2) آب اکسیژنه

آب اکسیژنه خالص H2O2 یک مایع ناروانی است که کمی آبی رنگ می‌باشد و با زحمت زیاد می‌توان آن را تهیه نمود. آب اکسیژنه‌ای که در داروخانه‌ها به اسم آب اکسیژنه رقیق فروخته می‌شود محلولی است از آب اکسیژنه در آب که در 100 قسمت آن سه قسمت آب اکسیژنه است و مانند آب بی‌رنگ و بی‌بوست و مزه تلخی دارد و کمی اسیدی است.

به مرور آب اکسیژنه تجزیه و تبدیل به آب و اکسیژن می‌گردد. این عمل تجزیه در محیط بازی سریعتر و در محیط اسیدی کندتر تا در محیط خنثی صورت می‌گیرد. ممکن است که اگر مدت مدیدی آب اکسیژنه را انبار کنند، کاملا" تجزیه و تبدیل به آب گردد. بر اثر گرد بعضی اجسام عمل تخریب آب اکسیژنه تسریع می‌گردد مانند گرد بی‌اکسید منگنز و گرد فلزات و …

ادامه مطلب ...

کروماتوگرافی به روش تعویض یون

**کروماتوگرافی به روش تعویض یون Ion Exchange Chromatography

یکی از متداولترین روشهای کروماتوگرافی در فرایند تخلیص بیومولکولها به طور عام و پروتئینها بطور خاص روش کروماتوگرافی تعویض یونی است. باتوجه به اینکه در این روش از خاصیت عام پروتئین ها یعنی توانایی ایجاد جاذبة یونی با یک مادة جاذب باردار با بار مخالف برای جداسازی پروتئین مورد نظر از سایر  ناخالصی‌ها استفاده می‌شود، 

جهت مشاهده اطلاعات بیشتر به این لینک مراجعه فرمایید

اولین های صنعت نفت ایران

ولین آموزشگاه عالی صنعت نفتاولین واحد آموزشی وابسته به شرکت ملی نفت – و یکی از قدیم ترین واحدهای آموزشی کشور – در سال 1318 با نام "آموزشگاه فنی آبادان" شروع به کار نمود که در سال 1341 به "دانشکده مهندسی نفت آبادان" تغییر نام یافت .


اولین پژوهشگاه در کشور
در سال 1337 ، نخستین سنگ بنای یک سازمان پژوهشی در شرکت ملی نفت ایران با نام امور پژوهش و آزمایشگاهها گذاشته شد که مدتی بعد به مرکز پژوهش و خدمات علمی وزارت نفت تغییر نام داد ، و بالاخره در سال 1368 به عنوان اولین پژوهشگاه در کشور ، از طرف وزارت فرهنگ و آموزش عالی به رسمیت شناخته شد.

اولین خط لوله نفت / اولین پالایشگاه
در سال 1909 م. مسئولیت احداث اولین خط لوله نفت در ایران از سوی شرکت نفت ایران و انگلیس به نام " چارلز ریش " داده شد.
برای احداث خط لوله اولیه در ایران ، لوله ها را به یکدیگر پیچ می کردند و آنها را در گودالی که در زمین حفر شده بود گذاشته و برای اینکه زنگ به لوله تأثیر نکند اطراف لوله را با پارچه یا نمد و یا چیز دیگری که آ لوده به قیر باشد و از سرایت آب و نم جلوگیری کند ، می پوشاندند و بعد با خاک ، روی گودال را مستور می کردند. لوله های مورد نیاز به قطر 6-8 اینچ با کشتی "آناتونگا" به اسکله آبادان آورده شد. اسکله را با غرق کردن یک کشتی قدیمی به نام دنیا درست کرده بودند. وقتی که کشتی حامل لوله ها یک هفته بعد از آماده شدن اسکله به آبادان رسید و حامل 2300 قطعه لوله بود، همه آن لوله ها ظرف ده روز به کمک نیروی انسانی در ساحل آبادان تخلیه شد. از آنجا که قرار بود خط لوله به موازات رودخانه کارون احداث گردد، برای نصب خط لوله از دوبه استفاده می گردید.


لوله ها با استفاده از دوبه و از طریق رودخانه تا آب گنجی در نزدیکی در خزینه بین شوشتر و مسجد سلیمان حمل می گردید. از آن نقطه به بعد خط باید از ستیغ کوه و ارتفاعات تپه ها با شیبهای تند کشیده شود. قهرمانان این عملیات قاطرهایی بودند که از مناطق مختلف مانند : اصفهان، بغداد و حتی قبرس خریداری شده بودند و بر گردن آنها زنگوله هایی آویزان شده بود. قاطرها را دو به دو می کردند و به تناسب طول لوله که بر روی پشت آنها قرار داده می شد فاصله قاطرها از یکدیگر تنظیم و بدین ترتیب لوله ها حمل می گردید. در کل بیش از 6000 هزار قاطر مورد استفاده قرار گرفت .
وقتی که بالاخره خط لوله احداث شد با مشکل حمل و عبور آن از روی عرض رودخانه بهمنشیر در جزیره آبادان مواجه شدند. عرض رودخانه حدود 25 متر بود. برای این کار همه مسیر رودخانه را از بشکه های خالی قیر که به وسیله سیم به یکدیگر وصل و بر روی آب شتاور می شدند و از دو طرف ساحل رودخانه توسط جراثقالی که خود ساخته بودند پر کردند. بدین ترتیب اقدام به احداث یک پل شناور شد. از آنجا که ارسال نفت به بالای تپه ها نیاز به فشار داشت لذا به نصب پمپهایی در منطقه تمبی در مسجد سلیمان شد که بتواند نفت را در دو بخش از ارتفاعات بین راه تلمبه کند. سپس به فاصله هر 50 کیلومتر در دشت تلمبه هایی نصب گردید به نحوی که ارسال نفت به آبادان به سهولت انجام پذیرد.


در اواسط سال 1911م. " چارلز ریش " آزمایشات اولیه را بر روی خط لوله به پایان رساند و اعلام کرد که خط لوله به طول 130 کیلومتر آماده بهره برداری است.
این خط لوله قادر بود سالیانه 400000 تن نفت خام را از مسجد سلیمان به پالاییشگاه آبادان ( اولین پالایشگاه در ایران ) که تا آن زمان هنوز آماده نشده بود حمل کند.
عملیات ساختمانی پالایشگاه آبادان از سال 1909 آغاز و در سال 1912 آماده بهره برداری شد .


اولین چاه نفت در جنوب (مسجد سلیمان)
در سال 1904 با تشویق دریا سالار " لرد فیشر " فرمانده نیروی دریایی انگلستان، کمیته بررسی منابع نفت جهت سوخت ناوگان نظامی بریتانیا با " دارسی " (دارنده امتیاز اکتشاف، استخراج، حمل و نقل و فروش نفت ایران) تماس گرفت تا او را به واگذاری امتیاز نفت ایران راضی کند. پس از مذاکراتی سرانجام توافق کردند شرکت جدیدی به نام سندیکای امتیازات تشکیل دهند. صاحبان شرکت جدید عبارت بودند از : دارسی، لرد استراتکونا و شرکت نفت برمه.
شرکت سندیکای امتیازات، کاوش نفت در ایران را از منطقه چاه سرخ به میدان نفتون منتقل کرد و پس از سه سال تلاش و پیگیری و حفاری و عملیات بالاخره در تاریخ 26 مه 1908 ( 5 خرداد ماه 1287 ه. ش. ) نفت از چاه حفاری شده در مسجد سلیمان فوران کرد. " رینولدز "، فرمانده عملیات به انگلستان چنین گزارش کرد: " مفتخرم گزارش کنم که امروز صبح در ساعت چهار به وقت ایران نفت در عمق 1180 پا از چاه شماره یک فوران کرد. جزئیات دیگر شامل غلظت و مقدار نفت متعاقبأ اعلام خواهد شد" .
تخمین زده می شد که استخراج نفت در این منطقه به حد کافی باشد و روزانه بیست هزار گالن استخراج شود.

اولین پتروشیمی در ایران
فکر و اندیشه ایجاد صنایع پتروشیمی در ایران قدمت حدود یک ربع قرن دارد. برای به ثمر رسیدن این هدف سازمانهای متعددی در وزارتخانه های مختلف به وجود آمد و اولین سازمان نسبتأ متشکل برای این منظور بنگاه شیمیایی وابسته به وزارت اقتصاد بود. عمده ترین فعالیت این بنگاه ایجاد کارخانه کود شیمیایی مرودشت (فارس) در سال 1338 بود، تا اینکه در سال 1343 کلیه فعالیتهایی که برای ایجاد یا توسعه صنایع پتروشیمی توسط واحدهای تابعه وزارتخانه و سازمانهای مختلف دولتی انجام می شد، در شرکت ملی نفت ایران متمرکز گردید و این شرکت برای تأمین منظور نهایی، شرکتی فرعی به نام شرکت ملی صنایع پتروشیمی تأسیس کرد.


مچتمع پتروشیمی شیراز که اولین مجتمع پتروشیمی در ایران است در سال 1342 جهت تولید کود شیمیایی در مرودشت فارس احداث شد. سرمایه اولیه این مجتمع 8/1 میلیون ریال بوده است. این مجتمع در سال 1345 بر اساس قانون به شرکت ملی صنایع پتروشیمی واگذار شد.
محصولات تولیدی این مجتمع عبارتند از :
آمونیاک، اوره، نیترات آمونیم، سودای سبک و سنگین، بیکربنات سدیم، اسید نیتریک، دی آمونیم فسفات، متانول، پرکلرین، آرگون.
موارد مصرف:
تولید کود شیمیایی، صنایع بلور و شیشه، نانوایی، شیرینی پزی، داروسازی، صنایع نظامی، مکمل سوخت بنزین، رنگ و تینر و چسب.
 

» منبع: ariyana1985.persianblog.com

جذب گاز بوسیله کمپلکسهای فلزی تریس اتیلن دی آمین

Gas-adsorbing ability of  

tris-ethylenediamine metal complexes  

 We previously reported that a single crystal of [Co(en)3]Cl3 shows gas adsorbency for various gases and organic vapors accompanying channel expansion in its crystal structure. To investigate the possibility of a single crystal of tris-ethylenediamine metal complex as an ionic single-crystal host for vapor adsorption, a series of adsorbencies of single crystals of [MIII(en)3]Cl3 (M = Co 1, Cr 2, Rh 3, Ir 4) were studied. All complexes have channels in their crystal structures, which dynamically and reversibly change size with vapor adsorption and show similar vapor adsorbency similar to the adsorption behavior of [Co(en)3]Cl3. لطفا به این لینک مراجعه فرمایید

 

 

رزین‌های مبادله کننده یون

پدیده تبادل یون برای اولین بار در سال 1850 و به دنبال مشاهده توانایی خاک‌های زراعی در تعویض برخی از یون‌ها مثل آمونیوم با یون کلسیم و منیزم موجود در ساختمان آنها گزارش شد. در سال 1870 با انجام آزمایش‌های متعددی ثابت شد که بعضی از کانیهای طبیعی بخصوص زئولیت‌ها واجد توانایی انجام تبادل یون هستند. در واقع به رزین‌های معدنی ، زئولیت می‌گویند و این مواد یون‌های سختی آور آب (کلسیم و منیزیم) را حذف می‌کردند و به جای آن یون سدیم آزاد می‌کردند از اینرو به زئولیت‌های سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیاد داشت چون احتیاج به مواد شیمیایی نبود و اثرات جانبی هم نداشتند.
اما زئولیت‌های سدیمی دارای محدودیتهایی بودند. این زئولیتها می‌توانستند فقط سدیم را جایگزین کلسیم و منیزیم محلول در آب نمایند و آنیونهایی از قبیل سولفات ، کلراید و سیلیکات‌ها بدون تغییر باقی می‌مانند. واضح است چنین آبی برای صنایع مطلوب نیست. پس از انجام تحقیقات در اواسط دهه 1930 در هلند زئولیتهایی ساخته شد که به جای سدیم فعال ، هیدروژن فعال داشتند. این زئولیتها که به تعویض کننده‌های کاتیونی هیدروژنی معروف جدید ، سیلیس نداشته و علاوه بر این قادرند همزامان هم سختی آب را حذف کنند و هم قلیائیست آب را کاهش دهند.
برای بهبود تکنولوژی تصفیه آب ، گامهای اساسی در سال 1944 برداشته شد که باعث تولید زرین‌های تعویض آنیونی شد. زرین‌های کاتیونی هیدروژنی تمام کاتیونی آب را حذف می‌کنند و رزین‌های آنیونی تمام آنیونهای آب را از جمله سیلیس را حذف می‌نمایند ، در نتیجه می‌توان با استفاده از هر دو نوع زرین ، آب بدون یون تولید کرد. همچنین پژوهشگران دریافتند که سیلیکات آلومینیم موجود در خاک قادر به تعویض یونی می‌باشد. این نتیجه گیری با تهیه ژل سیلیکات آلومینیم از ترکیب محلول سولفات آلومینیم و سیلیکات سدیم به اثبات رسید. بنابراین اولین رزین مصنوعی که ساخته شد سیلیکات آلومینیم بود. و امروزه اکثر زرین‌های تعویض یونی که در تصفیه آب بکار می‌روند رزین‌های سنتزی هستند که با پلیمریزاسیون ترکیبات آلی حاصل شده‌اند.
شیمی رزین‌ها
رزین‌های موازنه کننده یون ، ذرات جامدی هستند که می‌توانند یونهای نامطلوب در محلول را با همان مقدار اکی والان از یون مطلوب با بار الکتریکی مشابه جایگزین کنند. رزین‌های تعویض یونی شامل بار مثبت کاتیونی و بار منفی آنیونی می‌باشد بگونه‌ای که از نظر الکتریکی خنثی هستند. موازنه کننده‌ها با محلول‌های الکترولیت این تفاوت را دارند که فقط یکی از دو یون ، متحرک و قابل تعویض است به عنوان مثال ، یک تعویض کننده کاتیونی سولفونیک دارای نقاط آنیونی غیر متحرکی است که شامل رادیکالهای آنیونی SO2-3 می‌باشد که کاتیون متحرکی مثل +H یا +Na به آن هستند.
این کاتیونهای متحرک می‌توانند در یک واکنش تعویض یونی شرکت کنند به همین صورت یک تعویض کننده آنیونی دارای نقاط کاتیونی غیر متحرکی است که آنیون‌های متحرکی مثل -Cl یا -OH به آن متصل می‌باشد. در اثر تعویض یون ، کاتیون‌ها یا آنیون‌های موجود در محلول با کاتیون‌ها و آنیون‌های موجود در رزین تعویض می‌شود ، بگونه‌ای که هم محلول و هم رزین از نظر الکتریکی خنثی باقی می‌ماند. در اینجا با تعادل جامد مایع سروکار داریم بدون آنکه جامد در محلول حل شود. برای آنکه یک تعویض کننده یونی جامد مفید باشد باید دارای شرایط زیر باشد:

1. خود دارای یون باشد.
2. در آب غیر محلول باشد.
3. فضای کافی در شبکه تعویض یونی داشته باشد ، بطوریکه یونها بتوانند به سهولت در شبکه جامد رزین وارد و یا از آن خارج شوند.
در مورد رزین‌های کاتیونی هر دانه رزین با آنیون غیر تحرک و یون متحرک +H را می‌توان همچون یک قطره اسید سولفوریک با غلظت 25% فرض نمود. این قطره در غشایی قرار دارد که فقط کاتیون می‌تواند از ان عبور نماید. شکل زیر تصویر یک دانه رزین و تصویر معادل یک قطره اسید سولفوریک 25% نشان می‌دهد.
طبقه بندی رزین‌ها
رزین‌ها بر حسب گروه عامل تعویض متصل به پایه پلیمری رزین به چهار دسته تقسیم می‌شوند:

1. رزین‌های کاتیونی قوی SAC) Strongacidis Cation)
2. رزین‌های کاتیونی ضعیف WAC) Weak acidis Cation)
3. رزین‌های آنیونی قوی SBA) Strongbasic anion)
4. رزین‌های آمونیونی ضعیف WBA) Weak basic anion
بطور کلی رزین‌های نوع قوی در یک محدوده وسیع PH و رزین‌های نوع ضعیف در یک محدوده کوچک از PH مناسب هستند. ولیکن با استفاده از رزین‌های نوع ضعیف ، صرفه جویی قابل توجهی در مصرف مواد شیمیایی مورد نیاز برای احیا رزین را باعث می‌شود. رزین‌های کاتیونی قوی قادر به جذب کلیه کاتیونهای موجود در آب می‌باشد ولی نوع ضعیف قادر به جذب کاتیونهای هستند که به قلیائست آب مرتبط است و محصول سیستم اسید کربنیک است.

نوع قوی
Ca(HCO3)2 OR MgSO4 + 2ZSO3H -----> Ca2++2H2CO3 OR Mg2+ + H2SO4
نوع ضعیف
Mg(HCO3)2 OR Ca(HCO3)2 + 2ZCOOH -----> (ZCOO)2+ + Mg(ZCOO)2+Ca + 2H2CO3
مزیت رزین‌های کاتیونی ضعیف بازدهی بالای آنها در مقایسه با رزینهای کاتیونی قوی می‌باشد ، در نتیجه باعث تولید پساب کمتر در احیا مکرر می‌گردد. اصولا زمانی که هدف جداسازی کلیه کاتیونهای آب است بکارگیری توام رزین کاتیونی قوی و ضعیف اقتصادی تر از بکارگیری رزینهای کاتیونی قوی می‌باشد. رزین‌های آنیونی قوی قادر به جذب کلیه آنیونهای موجود در آب بوده ولی رزین‌های آنیونی قادر به جذب آنیون اسیدهای قوی نظیر اسید سولفوریک ، کلریدریک و نیتریک می‌باشد. رزین‌های آنیونی ضعیف مقاومتر از رزینهای آنیونی قوی بوده و به همین جهت در سیستم‌های تصفیه آب ، رزین‌های آنیونی قوی در پاین دست رزینهای آنیونی ضعیف قرار می‌گیرند.

2HCl OR 2H2SiO3 + 2ZOH -----> 2ZHSio3ZCl + H2O

2HCl OR 2HNO3 + ZOH -----> 2ZCl OR 2ZNO3 + H2O

برخی از کاربردهای رزین‌ها
· رزین‌های کاتیونی سدیمی نه تنها کاتیون‌های سختی آور آب بلکه همه یون‌های فلزی را با سدیم تعویض می‌کنند. برای احیا این نوع رزین‌های کافی است که رزین را با آب نمک شست و شو دهیم تا رزین به فرم اولیه خود برگردد.
· با رزین‌های کاتیونی چه نوع هیدروژنی و چه نوع سدیمی می‌توان آهن و منگنز را چون بقیه کاتیونها حذف کرد اما به علت امکان آلوده شدن رزین‌ها معمولا مشکلاتی داشته و باید نکاتی را رعایت کرد. اولا باید دقت کرد که قبل از حذف یون آهن توسط رزین هیچ هوایی با آب در تماس قرار نگیرد چون در اثر مجاورت با هوا ، آهن و منگنز محلول در اب اکسیده شده غیر محلول در می‌آیند و در نتیجه روی ذرات رزین رسوب کرده و باعث آلوده شدن رزین می‌گردد.
· با استفاده از رزین‌های تبادل یونی می‌توان لیزین را که جز اسید آمینه ضروری مورد نیاز رژیم غذایی خوکها ، ماکیان و سایر گونه‌های حیوانی می‌باشد ، را تخلیص کرد. دلیل اهمیت تخلیص این اسید آمینه ، نزدیکتر شدن رژیم غذایی حیوانات به نیازمندیهای آنها در مصرف مواد خام و ... است با توجه به اینکه مقدار لیزین در دانه‌ها ، بخصوص غلات ناچیز می‌باشد.
· حذف سیلیکا از آبهای صنعتی با استفاده از رزین‌های آنیونی قوی
· حذف آمونیاک از هوا بوسیله زئولیت‌های طبیعی اصلاح شده کلینوتپلولیت
منابع
1. نشریه علمی و پژوهشی شیمی ایران دوره 23 شماره 2
2. اصول تصفیه آب تالیف دکتر محمد چالکش امیری
3. روشهای پیشرفته در صنعت تصفیه آب تالیف مهندس محمد کرمانی 

شیمی و آتش نشانی

شیمی و آتش نشانی

چه نوع مواد شیمیایی در ساختمــــان یک دستگاه آتش نشانی، استفاده می شوند؟ این مــواد چگونه به خاموش شدن آتش کمک می کنند؟

   

آتش خاموش کن ها بسته به کاربردی که دارند ، شامل مواد شیمیایی مختلفی هستند .خاموش کننده های دستی که اغلب درفروشگاه های ابزارالات عرضه می شوند وبرای استفاده در آشپزخانه ها و گاراژها مورد استفاده قرار می گیرند ، با نیتروژن N2 یا کربن دی اکسید CO2 تحت فشار مشخص، تنظیم شده و به منظور ایجاد جریــانی از عامل اطفاء حریق از گسترش  آتش سوزی جلوگیری می کنند. در اینجا ماده ی موثر ممکن است پودری مانند پتاسیم هیدروژن کربنات (KHCO3)  ، آب مایع ، یک عامل پیشران مانند فلوئوروکربن یا … باشد. 

مؤثرترین و معروف ترین فلوئوروکربن به کار رفته تاکنون برومو کلرو دی فلوئوروکربن (CF2ClBr)بوده است که با عنوان هالون 1211 شناخته می شود.

ادامه مطلب ...

نانوپوشش‌هایی بر روی سطح

در سال‌های اخیر کاربرد فناوری لایه‌ی نازک به صورت اعمال نانوپوشش‌هایی بر روی سطح شیشه باعث بروز خواص ویژه و منحصربه‌فردی در رابطه با عبور امواج انتخابی نور شده است. از برجسته‌ترین انواع این شیشه‌ها، شیشه‌های کنترل کننده‌ی انرژی (Low-E) و شیشه‌های کنترل کننده‌ی خورشیدی (Solar Control) است که در این مقاله فرآیند تولید، ساختار، ویژگی‌ها و کاربردهای آنها معرفی شده، عملکرد آنها در مقایسه با شیشه معمولی مورد بحث و بررسی قرار گرفته است. این نوع شیشه‌ها ضمن دارا بودن تنوع در رنگ و سایر خصوصیات، با کاهش شدید امواج ماوراء بنفش و مادون قرمز عبوری و تنظیم عبور نور مرئی، قادرند در زمستان تا 85 درصد و در تابستان 80 درصد از هدر رفتن انرژی داخل ساختمان جلوگیری کنند. و لذا در راستای سیاستگذاری‌های بهینه‌سازی مصرف انرژی، اقلام بسیار مناسبی برای وارد شدن در سبد مصالح ساختمانی برای ساخت و سازهای رایج کشور پیشنهاد می‌شوند.  

مرجع و اصل فایل

تکنولوژی تبدیل متانول به اولفین(MTO )

تکنولوژی تبدیل متانول به اولفین(MTO )

            

   گاز طبیعی موارد مصرف گوناگونی داشته و بعضا به عنوان سوخت و یا ماده اولیه در تهیه محصولات شیمیایی به کار می رود که از مهمترین این محصولات می توان آمونیاک و متانول را نام برد... 

ادامه مطلب ...

تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص ازت، گوگرد و هال

تجزیه کیفی مواد آلی به روش ذوب قلیایی جهت تشخیص ازت، گوگرد و هالوژنها : 
 برای تشخیص این عناصر در ترکیبات آلی ابتدا باید آنها را به ترکیبات معدنی یونیزه تبدیل کرد سپس شناسایی نمود. این تبدیل ممکن است به روشهای مختلف صورت گیرد ولی بهترین روش ذوب ترکیبات با فلز سدیم است. در این روش سیانید سدیم (NaCN)، سولفید سدیم (Na2S) و هالید سدیم (NaX) تشکیل میشود که به آسانی قابل تشخیص هستند.  
ترکیب آلی (1)
معمولا سدیم به مقدار اضافی به کار برده میشود. در غیر اینصورت اگر گوگرد و نیتروژن هردو وجود داشته باشند، احتمالا تیوسیانات سدیم (NaSCN) تشکیل میشود. در این صورت در تشخیص نیتروژن به جای آبی پروس رنگ قرمز مشاهده میشود زیرا بجای یون (CN-)، یون (SCN-) خواهیم داشت. اما با سدیم اضافی تیوسیانات تشکیل شده تجزیه میشود و جواب درست به دست می آید



به مخلوط حاصل آب اضافه کرده مخلوط قلیایی را صاف نموده و سپس به آن (FeSO4) اضافه کنید در این صورت فروسیانید سدیم تشکیل میشود.
 
وقتی محلولهای قلیایی نمکهای فروی بالا جوشانده میشود بر اثر اکسیژن هوا کمی یون فریک تشکیل میشود. (بر اثر سولفوریک اسید رقیق هیدروکسیدهای فرو و فریک تشکیل شده حل میشوند) فروسیانیدها با نمک فریک تشکیل فروسیانید فریک (آبی پروس) میدهند.
 
برای اسیدی کردن محیط نباید از (HCl) استفاده کرد زیرا به علت تشکیل (FeCl6) رنگ زرد در محیط ایجاد میشود و به جای آبی پروس رنگ سبز ظاهر میشود. به همین دلیل کلرید فریک نیز نباید اضافه شود. همانطوری که قبلا ذکر شده است بر اثر اکسیداسیون به وسیله هوا در محیطهای قلیایی گرم به مقدار کافی یونهای فریک تشکیل میشود بنابراین نیازی به افزایش یون فریک نیست، افزایش مقدار کمی محلول رقیق فلئورید پتاسیم ممکن است به تشکیل آبی پروس در محلول که به آسانی قابل صاف شدن است کمک نماید (Fe3+ با F- تولید FeF63- میکند که پایدار است و باعث خارج شدن Fe3+ از محیط عمل میشود).
گوگرد به صورت یون سولفید را میتوان به وسیله استات سرب و استیک اسید و یا به و سیله پلمبیت سدیم (محلول قلیایی استات سرب) به صورت رسوب سولفید سرب (PbS) سیاه رنگ تشخیص داد.

برای تشخیص یونهای هالوژن (Cl, Br, I) از اثر محلول نیترات نقره در محیط اسید نیتریکی استفاده میشود در این صورت هالید نقره به صورت رسوب حاصل میشود.

طراحی دماسنج در مقیاس نانو

لطفا به این مرجع مراجعه فرمایید

تبدیل واحدها در محاسبات بر اساس مول

مول واحد اصلی اندازه گیری در شیمی است و به صورت زیر تعریف می شود.

یک مول برابر است با تعداد 1023×022/6 ذره از هر ماده، خواه این ماده عنصر باشد یا ترکیب. مثلا وقتی می گوییم یک مول آلومینیم یعنی مقداری آلومینیم که در آن تعداد 1023×022/6  اتم از این فلز وجود داشته باشد، یا وقتی می گوییم یک مول آب یعنی مقداری آب که در آن تعداد 1023×022/6  مولکول آب H2O  وجود داشته باشد. پس مول یک واحد شمارش است و باید بتوانیم در محاسبات آن را بر حسب واحدهای دیگر مثل جرم و حجم بیان کنیم. رابطه واحد مول با واحدهای دیگر به صورت زیر می باشد.

یک مول = تعداد 1023×022/6 ذره از ماده

یک مول = جرم اتمی یا مولکولی ماده بر حسب گرم

یک مول = حجمی برابر 4/22 لیتر یا 22400  میلی لیتر از یک ماده در حالت گاز در شرایط استاندارد.

مول را با واحدهای دیگری چون اتم گرم ، مولکول گرم و یون گرم نیز بیان می کنند. برای اتمها یک مول با یک اتم گرم برابر است، برای مولکولها یک مول با یک مولکول گرم برابر است و برای یونها یک مول با یک یون گرم برابر است.

مثال :‌ یک مول گاز آرگونA r برابر است با یک اتم گرم گاز آرگونA r .

        یک مول کربن تترا کلرید CCl4 برابر است با یک مولکول گرم کربن تترا کلرید CCl4 .

        یک مول یون Fe3+  آهن III  برابر است با یک یون گرم Fe3+  آهن III .

بر اساس مطالب بالا می توان رابطه زیر را نوشت که از آن به عنوان کلید تبدیل واحدها استفاده می کنیم :

یک مول = جرم مولی بر حسب گرم = 4/22 لیتر یا 22400 میلی لیتر گاز در شرایط استاندارد = تعداد 1023×022/6 ذره از هر ماده

 بنابر این با داشتن یکی از مقدارهای داده شده می توان دیگر مقادیر را با استفاده از ضرایب تبدیل بین این واحدها بدست آورد.

مثال : حساب کنید 2/0 مول گاز کربن دی اکسید CO2  ( جرم مولی برابر 44 ) :

آ) چند گرم جرم دارد ؟                 ب) در شرایط استاندارد چند لیتر حجم اشغال می کند ؟                        ج) دارای چند مولکول CO2  می باشد ؟

 جواب قسمت آ : وقتی جرم مولی این گاز برابر 44 ، است. می توان گفت :                                                      44 گرم گاز کربن دی اکسید = یک مول گاز کربن دی اکسید

که ضریب تبدیل از این تساوی با توجه به واحد معلوم یعنی 2/0 مول کربن دی اکسید، بدست می آید.

جواب قسمت ب : بر اساس کلید داده شده در تبدیل واحدها رابطه بین حجم گاز و مول در شرایط استانداد به صورت زیر است.

یک مول گاز کربن دی اکسید = 4/22 لیتر گاز کربن دی اکسید در شرایط استاندارد.

که ضریب تبدیل بر اساس واحد معلوم از آن بدست می آید.                             

جواب قسمت ج : بر اساس کلید داده شده در تبدیل واحدها رابطه بین تعداد مولکولهای کربن دی اکسید و مول آن به صورت زیر است.

یک مول گاز کربن دی اکسید = 1023×022/6 مولکول گاز کربن دی اکسید CO2 .

که ضریب تبدیل بر اساس واحد معلوم از آن بدست می آید. 

عنصر فلوئور F و تاریخچه کشف آن :

عنصر فلوئور  F و تاریخچه کشف آن :

فلوئور الکترونگاتیوترین عنصر جدول تناوبی است و می تواند با سایر عناصر ترکیب شود.  این عنصر گازی یک ظرفیتی، هالوژن، به رنگ زرد کم رنگ و سمی  بوده و  نوع خالص آن بسیار خطرناک و در صورت تماس با پوست، سوختگیهای شیمیائی شدید ایجاد می‌کند.

 نام فلورین و فلوئور اسپار از کلمه لاتین Fluere به معنی جریان یا فلاکس می ‌باشد. در سال 1525 استفاده از فلوئور اسپار به عنوان فلاکس مطرح گردد.

 فرسمان دانشمند روسی این عنصر را همه چیز خور خوانده است و بی ‌شک تعداد بسیار کمی از اجسام، چه طبیعی و چه ساخته دست انسان، وجود دارند که بتوانند در برابر اثر فلوئور مقاومت کنند.

سرگذشت فلوئور خود حاکی از این خصوصیت آن است. به استثنای گازهای نادر، فلوئور آخرین غیرفلزی بود که به صورت آزاد تهیه شد. یکصد سال از تاریخ پیشگویی وجود چنین عنصری گذشت تا آنکه دانشمندان قادر به تولید آن به صورت گازی شدند. شیمیدانان در طی این دوره , پانزده بار دست به تهیه آن زدند ولی هر بار کوشش‌هایشان بی ‌ثمر ماند و در موارد متعددی حتی جان خود را از دست دادند.

در عین حال کانی طبیعی معروف فلوئور یعنی فلورین از زمانهای بسیار دور برای هر کلکسیونر سنگی آشنا بوده است. نام این کانی بی ‌ضرر در دست نوشته‌های مربوط به قرن شانزدهم هم ذکر شده است.

سال 1771 میلادی، یعنی سال جداسازی اسید فلوئوریدریک  توسط شیله , دانشمند سوئدی را تاریخ کشف فلوئور در نظر می ‌گیرند. خلوص اسید به دست آمده به روش شیله همچنان به عنوان یک مسئله برجای ماند تا آنکه در سال 1809 میلادی، گی‌لوساک و تنار, اسید فلوئوریدریکی نسبتاً خالص به دست آوردند.

هنری مواسان Henri Moissan …. که توانست فلوئور را بدست آورد …

فارادی در سال 1834 میلادی, کوشید تا معمای تهیه فلوئور آزاد را حل کند اما او حتی با الکترولیز فلوئوریدهای مذاب هم نتوانست به نتیجه‌ای برسد.

در سال 1836 میلادی برادران ناکس ایرلندی به قصد حل این مشکل به میدان آمدند. آنها در طی پنج سال آزمایشات خطرناکی انجام دادند که هیچ یک به نتیجه‌ای نرسید. این دو برادر در طول کار به شدت مسموم شدند و یکی از آنها، جان خود را از دست داد.

سرانجام لحظه‌ای فرا رسد که مواسان,  دانشمند فرانسوی ( Henri Moissan), سرنوشت فلوئور را در دستهای خود گرفت. او ابتدا خطاهای پیشینیان خود را تحلیل کرد و در روز 26 ژوئن 1886 میلادی , اولین آزمایش موفقت آمیز خود را که ضمن آن در اثر واکنش فلوئور با سیلسیم شعله‌ای مشاهده کرد, انجام داد. پس از آن گزارشی به آکادمی علوم پاریس فرستاد و در آن نظرات مختلفی که در مورد ماهیت این کار امکان داشت مطرح شود, درج کرد. به این ترتیب پس از انجام موفقیت‌آمیز آزمایش در حضور اعضای اکادمی پاریس همگی گواهی بر موفقیت او دادند و سال 1886 میلادی , سالی تاریخی در بیوگرافی فلوئور شد. (تصویر)

کانی (ماده معدنی)  فلورین :

ادامه مطلب ...

دسته بندی مواد غذایی افزودنی

دسته بندی مواد غذایی افزودنی
آنتی اکسیدان ها: موادی هستند که برای جلوگیری از اکسیداسیون چربی ها و روغن های غیر اشباع به مواد غذایی افزوده می شوند.
به طور کلی فرآیند اکسیداسیون بر اثر واکنش اکسیژن موجود در هوا با چربی ها اتفاق می افتد و منجر به تندی ، تغییر طعم و از دست دادن رنگ می شود.
امولسیفایرها: باعث ترکیب شدن آب و روغن با هم می شوند.
افزایش دهنده های طعم : موادی هستند که خودشان دارای طعم خاصی نیستند یا طعم اندکی دارند، ولی باعث تشدید طعم طبیعی غذاها می شوند. این مواد اغلب زمانی به کار می روند که مقدار بسیار اندکی از یک ماده طبیعی در محصول باشد.
عوامل تغلیظ کننده : کربوهیدرات های طبیعی یا اصلاح شده هستند که مقداری از آبی را که در غذا وجود دارد جذب می کنند و باعث غلیظتر شدن آنها می شوند.
عوامل تغلیظ کننده به دلیل مخلوط نگه داشتن ترکیبات پیچیده روغنها، آب ، اسیدها و مواد جامد باعث پایداری غذاهای تولید شده در کارخانه ها می شوند.
علاوه بر گروههایی که به آنها اشاره شد طعم دهنده ها، شیرین کننده ها و رنگهای مصنوعی نیز از دیگر گروههای مواد افزودنی هستند که هر یک شامل مواد مختلفی می باشند.

معرفی بعضی افزودنی های مواد غذایی 

آسولفام پتاسیم : یکی از شیرین کننده های مصنوعی است که در بعضی آدامس ها و دسرهای ژلاتینی استفاده می شود و به دلیل بعضی زیان ها نظیر خطر سرطان زایی توصیه می شود که صنایع غذایی از آن استفاده نکنند.
آلژینات : از عوامل تغلیظ کننده است و به عنوان پایدارکننده کف بستنی ، پنیر و آب نبات استفاده می شود. آلژینات یکی از مشتقات جلبک های دریایی است که باعث حفظ بافت مناسب در فرآورده های لبنی و غذاهای کنسرو شده می شود و تاکنون خطری در استفاده آن دیده نشده است.
آلفاتوکوفرول (ویتامینE
):یک آنتی اکسیدان و نیز یک ماده مغذی است که در روغنهای گیاهی مورد مصرف قرار می گیرد و از تند شدن روغنها جلوگیری می کند. مطالعات نشان داده است که مقادیر زیاد این ویتامین می تواند به کاهش خطر ابتلا به بیماری قلبی و سرطان کمک کند.
اسید اسکوربیک (ویتامین C
):آنتی اکسیدانی است که به عنوان یک ماده مغذی ، پایدارکننده رنگ در آبمیوه ها و گوشتهای نمک سود شده استفاده می شود و از تشکیل نیتروز آمین ها که باعث رشد غده های سرطانی می شوند، جلوگیری می کند.
آسپارتام : یک شیرین کننده مصنوعی است که معمولا در غذاهای رژیمی استفاده می شود و در بعضی افراد که به این ماده حساس هستند می تواند ایجاد سردرد یا خواب آلودگی کند و معمولا توصیه می شود افرادی که از فنیل کتونوری رنج می برند در مصرف مواد غذایی دارای آسپارتام خودداری کنند.
بتاکاروتن : یک رنگ دهنده طبیعی است که در مغز شکلات ها و مارگارین استفاده می شود و بدن می تواند این ماده را به ویتامین Aتبدیل کند و لذا افزودن آن به مواد غذایی خطر خاصی را به دنبال ندارد.
BHAیا هیدروکسی انیزول بوتیلیتد و BHTیا هیدروکسی تولوئن بوتیلتید: آنتی اکسیدان هایی هستند که در تهیه چیپس و بعضی روغن ها استفاده می شوند و خطر سرطان زایی آنها روی موشها ثابت شده است و لذا استفاده از آنها در صنایع غذایی توصیه نمی شود.

موازنه ی واکنشهای شیمیایی

ضریب مولی یا ضریب استوکیومتری چیست :

ضریب استوکیومتری عددی است که در سمت چپ نماد شیمیایی یک عنصر یا فرمول شیمیایی یک ترکیب قرار می گیرد و تعداد آن را مشخص می کند. مثلا وقتی می نویسیم ۵Fe  عدد 5 ضریب استوکیومتری یا ضریب مولی آهن را نشان می دهد و مفهوم آن پنج اتم آهن است. یا وقتی می نویسیم ۳H2O ، عدد سه ضریب استوکیومتری آب را نشان می دهد، یعنی سه مولکول آب. ضریب استوکیومتری یک ترکیب علاوه بر آنکه تعداد واحد فرمولی آن ترکیب را نشان می دهد، در شمارش اتمهای سازنده آن ترکیب نیز محاسبه می شود.

مثال :

در 5 مولکول سولفوریک اسید، H2SO4 ، تعداد 10 اتم H هیدروژن ، 5 اتم S گوگرد و 20 اتم O اکسیژن وجود دارد.

 

موازنه واکنشهای شیمیایی به روش وارسی :

برای موازنه واکنشهای شیمیایی به روش وارسی به این صورت عمل می کنیم.

1- ترکیبی را که بیشترین تعداد اتمها در ساختمان آن وجود دارد ( از بین واکنش دهنده ها یا فرآورده ها ) انتخاب می کنیم.

2- موازنه را از عنصری در این ترکیب آغاز می کنیم که بیشترین شمار اتم را داشته باشد و پراکندگی آن در معادله واکنش کمتر باشد. ( منظور از پراکندگی کمتر این است که آن اتم در معادله شیمیایی واکنش در ترکیبهای کمتری دیده شود )

3- در مرحله آخر ابتدا تعداد اتمهای اکسیژن و سپس اتمهای هیدروژن را موازنه می کنیم.

توجه داشته باشید که اتمهای اکسیژن و هیدروژن حتما نباید در مرحله آخر موازنه شوند و در مواردی این قاعده اجرا نمی شود.

 

در موازنه به روش وارسی باید به نکات زیر نیز توجه داشت :

- اتمهای مناسب برای شروع موازنه باید فقط به صورت ترکیب باشند. مثلا در معادله واکنش زیر 3 نوع اتم (C , N , O  ) وجود دارد که می توان موازنه را از آنها شروع کرد، اما چون اکسیژن در سمت چپ به صورت عنصر است موازنه با آن شروع نمی شود.

                                                                      CH4 + NH3 + O2       →               HCN + H2O  

معادله موازنه شده نباید دارای ضرایب کسری باشد. اگر در موازنه به ضرایب کسری برخوردیم ، تمام ضرایب معادله را در عددی مناسب ضرب می کنیم تا ضرایب کسری از بین بروند. برای مثال معادله واکنش سوختن گاز اتان پس از موازنه به صورت زیر است.

                                                                          C2H6 + 7/2O2      →               2CO2 + 3H2O 

برای از بین بردن ضریب کسری 2/7 برای اکسیژن می توان تمام ضریبهای معادله را در عدد 2 ضرب کرد. تا معادله به صورت زیر در آید

2C2H6 + 7O2        →             4CO2 + 6H2O

- ضریبهای موازنه باید کوچکترین عددهای صحیح را برای آن معادله شامل شوند. مثلا معادله بالا را می تونستیم با ضریبهای بزرگتری نیز موازنه کنیم .

4C2H6 + 14O2         →             6CO2 + 12H2O                                                                                           

این ضریبها عددهای صحیح هستند ولی می توان آنها را ساده کرد.

اهمیت استفاده از ضریبهای غیر کسری و کوچک در محاسبات استوکیومتری نشان داده می شود.

 

حل چند تمرین در مورد موازنه به روش وارسی :

موازنه را از اتم کربن یا نیتروژن شروع می کنیم.

  CH4 + NH3 + O2      →                HCN + H2O              

بعد از موازنه اتمهای C معادله به صورت مقابل نوشته می شود.

1CH4 + NH3 + O2         →                1HCN + H2O

موازنه اتمهای N  ادامه می یابد.

        1CH4 + 1NH3 + O2           →                 1HCN + H2O                             

و سرانجام اتمهای O موازنه شده و معادله موازنه شده بدست می آید.

۱CH4 + 1NH3 + 3/2O2     →             1HCN + 3H2O        

سپس معادله در 2 ضرب می شود تا ضریب کسری از بین برود.

   2CH4 + 2NH3 + 3O2     →                2HCN + 6H2O

اتم P پراکندگی زیادی دارد در معادله در 4 جا دیده می شود 

P2I4 + P4 + H2O        →                  PH4I + H3PO4     

پس موازنه با آن نباید شروع شود. دو نوع اتم ( I , O ) در هر طرف معادله فقط در یک ماده ظاهر شده اند و هر دو به صورت ترکیب هستند اما اکسیژن در ترکیبی با بیشترین تعداد اتم است ( H3PO4 ) . بنابر این موازنه با اتمهای O آغاز می شود :

P2I4 + P4 + 4H20      →                  PH4I + 1H3PO4

با موازنه اتمهای H می نویسیم 

 P2I4 + P4 + 4H2O             →            5/4PH4I + 1H3PO4                                         

بعد از موازنه اتمهای I  داریم

5/16P2I4 + P4 + H2O       →                 5/4PH4I + 1H3PO4 

سرانجام معادله را برای اتمهای P موازنه می کنیم.

                     5/16P2I4 + 13/32P4 + 4H20        →                    5/4PH4I + 1H3PO4

                                                      

موازنه معادله های یونی :

برخی معادله های یونی را نیز می توان به روش وارسی موازنه کرد. در موازنه این نوع معادله ها باید علاوه بر موازنه تعداد اتمها در دو سمت معادله تعداد بارهای منفی یا مثبت نیز در دو سمت معادله برابر شوند. در این نوع معادله ها بهتر است ابتدا با استفاده از تغییر عدد اکسایش ضرایب موازنه را برای اتمهای که عدد اکسایش آنها تغییر کرده است را به دست آوریم. در معادله زیر عدد اکسایش کلر در Cl2 صفر و در ClO3-  ، 5+ می باشد یعنی تغییر عدد اکسایش 5 درجه است. از طرفی عدد اکسایش کلر در یونCl- ، 1- می باشد. پس تغییر عدد اکسایش یک درجه است. تغییر عدد اکسایش در ClO3- را ضریب Cl- و تغییر عدد اکسایش در Cl- را ضریب ClO3- قرار می دهیم. 

                                            Cl2 + OH-        →                 ClO3- + Cl- + H2O   

Cl2 + OH-           →               1ClO3- + 5Cl- + H2O     

برای موازنه بارهای منفی به OH-   ضریب 6 می دهیم.

Cl2 + 6OH-      →                1ClO3- + 5Cl- + H2O              

هیدروژنها را موازنه می کنیم.

Cl2 + 6OH-      →                  1ClO3- + 5Cl- + 3H20

 با موازنه اتمهای کلر ، معادله موزنه می شود.

3Cl2 + 6OH-        →                1ClO3- + 5Cl- + 3H2O   

شیمی معدنی چیست؟

شیمی معدنی چیست؟


شیمی معدنی شاخه‌ای از دانش شیمی است که با کانی ها (مواد معدنی) و خواص آنها سروکار دارد.شیمی معدنی شاخه بزرگی از علم شیمی است که بطور کلی شامل بررسی، تحلیل و تفسیر نظریه‌های خواص و واکنشهای تمام عناصر و ترکیبات آنها بجز هیدروکربنها و اغلب مشتقات آنهاست.به عبارت دیگر می‌توان چنین اظهار نظر کرد که شیمی معدنی کلیه موادی که از جمله ترکیبات کربن نباشند، به استثنای اکسیدهای کربن و دی سولفید کربن را دربر می‌گیرد.


نگاه کلی
در شیمی معدنی در مورد گستره وسیعی از موضوعات از جمله: ساختمان اتمی، بلورنگاری(کریستالوگرافی)، انواع پیوندهای شیمیایی اعم از پیوندهای کووالانسی، یونی، هیدروژنی و ...، ترکیبات کوئوردیناسیون و نظریه‌های مربوطه از جمله نظریه میدان بلور و نظریه اوربیتال مولکولی، واکنشهای اسید و باز، سرامیکها، تقارن مولکولی و انواع بخش‌های زیرطبقه الکتروشیمی (برقکافت، باطری، خوردگی، نیمه رسانایی و غیره) بحث می‌شود.در باب اهمیت شیمی معدنی، ساندرسن چنین نوشته است:

در واقع بیشترین مباحث علم شیمی را دانش اتمها تشکیل می‌دهد و کلیه خواص مواد و ترکیبات، به ناچار ناشی از نوع اتمها و روشی است که با توجه به آن، اتمها به یکدیگر می‌پیوندند و مجموعه تشکیل می‌دهند و از طرف دیگر کلیه تغییرات شیمیایی متضمن بازیابی اتمهاست. در این حال شیمی معدنی تنها بخشی از علم شیمی است که با توجه به آن می‌توان به صورتی ویژه، در باب مغایرتهای موجود در میان کلیه انواع اتمها بررسی نمود.

طبقه بندی مواد معدنی

در یک مفهوم گسترده، مواد معدنی را می‌توان در چهار طبقه تقسیم بندی نمود: عناصر، ترکیبات یونی، ترکیبات مولکولی و جامدات شبکه‌ای یا بسپارها.
عناصر: عناصر دارای ساختارها و خواص بسیار متفاوت هستند. بنابراین می‌توانند به یکی از صورتهای زیر باشند:

گازهای اتمی (Kr , Ar) و یا گازهای مولکولی (O2
, H2)

جامدات مولکولی (
C6 , S8 , P4)

مولکولها و یا جامدات شبکه‌ای گسترش یافته (الماس، گرافیت)


فلزات جامد (Co , W) و یا مایع (Hg , Ca)


ترکیبات یونی: این ترکیبات در دما و فشار استاندارد همواره جامدند و عبارت‌اند از:


ترکیبات یونی ساده، مانند NaCl که در آب یا دیگر حلالهای قطبی محلول‌اند.


اکسیدهای یونی که در آب غیر محلول‌اند و اکسیدهای مختلط همچون اسپنیل (
MgAl2O4)، سیلیکاتهای مختلف مانند CaMg(SiO3)2 و ...

دیگر هالیدهای دوتایی، کاربیدها، سولفیدها و مواد مشابه. چند مثال عبارتست از: BN , GaAs , SiC , AgCl.


ترکیباتی که دارای یونهای چند اتمی (به اصطلاح کمپلکس) هستند.


ترکیبات مولکولی: این ترکیبات ممکن است جامد، مایع و یا گاز باشند و مثالهای زیر را دربر می‌گیرند:


ترکیبا دوتایی ساده همچون
UF6 , OsO4 , SO2 , PF3

ترکیبات پیچیده فلزدار همچون
RuH(CO2Me)(PPh3)3 , PtCl2(PMe3)2

ترکیبات آلی فلزی که مشخصا پیوندهای فلز به کربن دارند، مانند
Zr(Cn2C6H5)4 , Ni(CO)4

جامدات شبکه‌ای یا بسپارها: نمونه‌های این مواد شامل بسپارهای متعدد و متنوع معدنی و ابررساناها است. فرمول نمونه‌ای از ترکیبات اخیر YBa2Cu3O7 است.


ساختارهای مواد معدنی

ساختار بسیاری از مواد آلی از چهار وجهی مشتق می‌شود. فراوانی آنها به این دلیل است که در مواد آلی ساده، بیشترین ظرفیت کربن و همچون بیشتر عناصر دیگری (به استثنای هیدروژن) که معمولاً به کربن پیوند می‌شوند، چهار است. اما اجسام معدنی وضعیت ساختاری بسیار پیچیده‌ای دارند، زیرا اتمها ممکن است خیلی بیشتر از چهار پیوند تشکیل دهند. بنابراین، در مواد معدنی اینکه اتمها پنج، شش، هفت، هشت و تعداد بیشتری پیوند تشکیل دهند، امری عادی است. پس تنوع شکل هندسی در مواد معدنی خیلی بیشتر از مواد آلی است.
ساختار مواد معدنی اغلب بر اساس تعدادی از وجیهای با نظم کمتر، نظیر دو هرمی با قاعده مثلث، منشور سه ضلعی و غیره و همچنین بر اساس شکلهای باز چند وجیهای منتظم یا غیر منتظم که در آنها یک یا چند راس حذف شده است، نیز مشاهده می‌شود.

انواع واکنشهای مواد معدنی

در بیشتر واکنشهای آلی می‌توانیم در مورد مکانیسمی که واکنش از طریق آن انجام می‌شود، بحث و بررسی کنیم، در صورتی که برای بسیاری از واکنشهای معدنی فهم دقیق مکانیسم غیر ممکن یا غیر ضروری است.

رابطه شیمی فیزیک و شیمی معدنی

در توجیه موجودیت مواد معدنی و در توصیف رفتار آنها، به استفاده از جنبه‌های خاصی از شیمی فیزیک، بخصوص ترمودینامیک، ساختارهای الکترونی اتمها، نظریه‌های تشکیل پیوند در مولکولها، سینتیک واکنش و خواص فیزیکی مواد نیاز داریم. بنابراین با استفاده از شیمی فیزیک می‌توان به ساختار اتمی و مولکولی، تشکیل پیوند شیمیایی و دیگر اصول لازم برای درک ساختار و خواص مواد معدنی پرداخت.